DOI QR코드

DOI QR Code

UAV-MEC Offloading and Migration Decision Algorithm for Load Balancing in Vehicular Edge Computing Network

차량 엣지 컴퓨팅 네트워크에서 로드 밸런싱을 위한 UAV-MEC 오프로딩 및 마이그레이션 결정 알고리즘

  • Received : 2022.08.01
  • Accepted : 2022.09.26
  • Published : 2022.12.31

Abstract

Recently, research on mobile edge services has been conducted to handle computationally intensive and latency-sensitive tasks occurring in wireless networks. However, MEC, which is fixed on the ground, cannot flexibly cope with situations where task processing requests increase sharply, such as commuting time. To solve this problem, a technology that provides edge services using UAVs (Unmanned Aerial Vehicles) has emerged. Unlike ground MEC servers, UAVs have limited battery capacity, so it is necessary to optimize energy efficiency through load balancing between UAV MEC servers. Therefore, in this paper, we propose a load balancing technique with consideration of the energy state of UAVs and the mobility of vehicles. The proposed technique is composed of task offloading scheme using genetic algorithm and task migration scheme using Q-learning. To evaluate the performance of the proposed technique, experiments were conducted with varying mobility speed and number of vehicles, and performance was analyzed in terms of load variance, energy consumption, communication overhead, and delay constraint satisfaction rate.

최근 무선 네트워크에서 발생하는 계산 집약적이고 지연시간에 민감한 태스크를 처리하기 위해 모바일 엣지 서비스에 대한 연구가 진행되고 있다. 하지만 지상에 고정되어 있는 MEC는 출퇴근 시간과 같이 태스크 처리 요청이 일시적으로 급증하는 상황에 대해 유연하게 대처할 수 없다. 이를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 모바일 엣지 서비스를 제공하는 기술이 등장하였다. UAV는 지상 MEC 서버와 달리 배터리 용량이 제한되어 있어 UAV MEC 서버 간 로드 밸런싱을 통해 에너지 효율성을 최적화 하는 것이 필요하다. 따라서 본 논문에서는 UAV의 에너지 상태와 차량의 이동성을 고려하며 유전 알고리즘 기반의 태스크 오프로딩과 Q-learning 기반의 태스크 마이그레이션을 통한 로드 밸런싱 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 차량 속도와 수에 따른 실험을 진행하고, 로드 분산, 에너지 사용량, 통신 오버헤드, 지연 시간 만족도 측면에서 성능을 분석하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).

References

  1. W. Ouyang, Z. Chen, J. Wu, G. Yu, and H. Zhang "Dynamic task migration combining energy efficiency and load balancing optimization in three-tier UAV-enabled mobile edge computing system," MDPI Electronics, Vol.10, No.2, pp.1-30, 2021.
  2. H. Peng and X. -S. Shen, "DDPG-based resource management for MEC/UAV-Assisted vehicular networks," 2020 IEEE 92nd Vehicular Technology Conference (VTC2020- Fall), pp.1-6, BC. Canada, Nov. 2020.
  3. Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, "Joint deployment and task scheduling optimization for large-scale mobile users in multi-uav-enabled mobile edge computing," IEEE Transactions on Cybernetics, Vol.50, No.9, pp.3984-3997, Sep. 2020. https://doi.org/10.1109/tcyb.2019.2935466
  4. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and R. Masroor, "Energy efficient UAV-enabled mobile edge computing for IoT devices: A review," in IEEE Access, Vol.9, pp.127779-127798, 2021. https://doi.org/10.1109/ACCESS.2021.3112104
  5. Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges", IEEE Communications Magazine, Vol.54, No.5, pp.36-42, May 2016. https://doi.org/10.1109/MCOM.2016.7470933
  6. L. Zhang et al., "Task offloading and trajectory control for UAV-Assisted mobile edge computing using deep reinforcement learning," IEEE Access, Vol.9, pp.53708-53719, 2021. https://doi.org/10.1109/ACCESS.2021.3070908
  7. N. Zhao, Z. Ye, Y. Pei, Y. -C. Liang, and D. Niyato, "Multiagent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing," IEEE Transactions on Wireless Communications, Early Access, Mar. 2022.
  8. H. Hu, X. Zhou, Q. Wang, and R. Q. Hu, "Online computation offloading and trajectory scheduling for UAV-enabled wireless powered mobile edge computing," China Communications, Vol.19, No.4, pp.257-273, Apr. 2022.
  9. J. Wang, D. Feng, J. Zhu, and H. Huang, "Vehicular computation offloading in UAV-enabled MEC systems," 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp.1071-1076, Hangzhou, China, May 2022..
  10. X. He, M. Meng, S. Ding, and H. Li, "A survey of task migration strategies in mobile edge computing," 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp.400-405, 2021, Chengdu, China, Apr. 2021.
  11. C. Gong, L. Wei, D. Gong, T. Li, and F. Feng, "Energyefficient task migration and path planning in UAV-enabled mobile edge computing system," Hindawi Complexity, Vol.2022, pp.1-16, Apr. 2022.
  12. N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, "AFRL: Adaptive federated reinforcement learning for intelligent jamming defense in FANET," Journal of Communications and Networks, Vol.22, No.3, pp.244-258, Jun. 2020. https://doi.org/10.1109/JCN.2020.000015