• Title/Summary/Keyword: decision algorithm

Search Result 2,348, Processing Time 0.025 seconds

Decision Feedback Equalizer Algorithms based on Error Entropy Criterion (오차 엔트로피 기준에 근거한 결정 궤환 등화 알고리듬)

  • Kim, Nam-Yong
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • For compensation of channel distortion from multipath fading and impulsive noise, a decision feedback equalizer (DFE) algorithm based on minimization of Error entropy (MEE) is proposed. The MEE criterion has not been studied for DFE structures and impulsive noise environments either. By minimizing the error entropy with respect to equalizer weight based on decision feedback structures, the proposed decision feedback algorithm has shown to have superior capability of residual intersymbol interference cancellation in simulation environments with severe multipath and impulsive noise.

Multi-Interval Discretization of Continuous-Valued Attributes for Constructing Incremental Decision Tree (증분 의사결정 트리 구축을 위한 연속형 속성의 다구간 이산화)

  • Baek, Jun-Geol;Kim, Chang-Ouk;Kim, Sung-Shick
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.4
    • /
    • pp.394-405
    • /
    • 2001
  • Since most real-world application data involve continuous-valued attributes, properly addressing the discretization process for constructing a decision tree is an important problem. A continuous-valued attribute is typically discretized during decision tree generation by partitioning its range into two intervals recursively. In this paper, by removing the restriction to the binary discretization, we present a hybrid multi-interval discretization algorithm for discretizing the range of continuous-valued attribute into multiple intervals. On the basis of experiment using semiconductor etching machine, it has been verified that our discretization algorithm constructs a more efficient incremental decision tree compared to previously proposed discretization algorithms.

  • PDF

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

Distributed Decision-Making in Wireless Sensor Networks for Online Structural Health Monitoring

  • Ling, Qing;Tian, Zhi;Li, Yue
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.350-358
    • /
    • 2009
  • In a wireless sensor network (WSN) setting, this paper presents a distributed decision-making framework and illustrates its application in an online structural health monitoring (SHM) system. The objective is to recover a damage severity vector, which identifies, localizes, and quantifies damages in a structure, via distributive and collaborative decision-making among wireless sensors. Observing the fact that damages are generally scarce in a structure, this paper develops a nonlinear 0-norm minimization formulation to recover the sparse damage severity vector, then relaxes it to a linear and distributively tractable one. An optimal algorithm based on the alternating direction method of multipliers (ADMM) and a heuristic distributed linear programming (DLP) algorithm are proposed to estimate the damage severity vector distributively. By limiting sensors to exchange information among neighboring sensors, the distributed decision-making algorithms reduce communication costs, thus alleviate the channel interference and prolong the network lifetime. Simulation results in monitoring a steel frame structure prove the effectiveness of the proposed algorithms.

A Study on the Prediction of Community Smart Pension Intention Based on Decision Tree Algorithm

  • Liu, Lijuan;Min, Byung-Won
    • International Journal of Contents
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • With the deepening of population aging, pension has become an urgent problem in most countries. Community smart pension can effectively resolve the problem of traditional pension, as well as meet the personalized and multi-level needs of the elderly. To predict the pension intention of the elderly in the community more accurately, this paper uses the decision tree classification method to classify the pension data. After missing value processing, normalization, discretization and data specification, the discretized sample data set is obtained. Then, by comparing the information gain and information gain rate of sample data features, the feature ranking is determined, and the C4.5 decision tree model is established. The model performs well in accuracy, precision, recall, AUC and other indicators under the condition of 10-fold cross-validation, and the precision was 89.5%, which can provide the certain basis for government decision-making.

Automatic Recognition of Analog and Digital Modulation Signals (아날로그 및 디지털 변조 신호의 자동 인식)

  • Seo Seunghan;Yoon Yeojong;Jin Younghwan;Seo Yongju;Lim Sunmin;Ahn Jaemin;Eun Chang-Soo;Jang Won;Nah Sunphil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.73-81
    • /
    • 2005
  • We propose an automatic modulation recognition scheme which extracts pre-defined key features from the received signal and then applies equal gain combining method to determine the used modulation. Moreover, we compare and analyze the performance of the proposed algorithm with that of decision-theoretic algorithm. Our scheme extracts five pre-defined key features from each data segment, a data unit for the key feature extraction, which are then averaged over all the segments to recognize the modulation according to the decision procedure. We check the performance of the proposed algorithm through computer simulations for analog modulations such as AM, FM, SSB and for digital modulations such as FSK2, FSK4, PSK2, and PSK4, by measuring recognition success rate varying SNR and data collection time. The result shows that the performance of the proposed scheme is comparable to that of the decision-theoretic algorithm with less complexity.

Optimization of parameters in mobile robot navigation using genetic algorithm (유전자 알고리즘을 이용한 이동 로봇 주행 파라미터의 최적화)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1161-1164
    • /
    • 1996
  • In this paper, a parameter optimization technique for a mobile robot navigation is discussed. Authors already have proposed a navigation algorithm for mobile robots with sonar sensors using fuzzy decision making theory. Fuzzy decision making selects the optimal via-point utilizing membership values of each via-point candidate for fuzzy navigation goals. However, to make a robot successfully navigate through an unknown and cluttered environment, one needs to adjust parameters of membership function, thus changing shape of MF, for each fuzzy goal. Furthermore, the change in robot configuration, like change in sensor arrangement or sensing range, invokes another adjusting of MFs. To accomplish an intelligent way to adjust these parameters, we adopted a genetic algorithm, which does not require any formulation of the problem, thus more appropriate for robot navigation. Genetic algorithm generates the fittest parameter set through crossover and mutation operation of its string representation. The fitness of a parameter set is assigned after a simulation run according to its time of travel, accumulated heading angle change and collision. A series of simulations for several different environments is carried out to verify the proposed method. The results show the optimal parameters can be acquired with this method.

  • PDF

A Rough Mode Decision Algorithm for Transform Skip Mode in HEVC (HEVC의 Transform Skip Mode를 위한 Rough Mode Decision 알고리즘)

  • Kim, Youngjo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.104-113
    • /
    • 2014
  • The existing rough mode decision (RMD) algorithm, used in HEVC standard loses the coding efficiency and wastes encoding time when encoding using transform skip mode (TSM) because the RMD algorithm in HEVC uses a selection method that is designed for DCT, not for TSM. This paper proposes a new RMD algorithm for TSM in HEVC. Our proposed RMD algorithm enhances the coding efficiency by employing a new cost function to increase the probability of selecting the best intra prediction mode for TSM. In addition, it reduces the encoding time by skipping the encoding process of least feasible TSM based on a newly proposed threshold value. The experiment results show that the proposed method achieves coding gains of -0.3% for screen contents with a 10% reduction in encoding time compared to those of the HEVC standard.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

Tap-length Optimization of Decision Feedback Equalizer Using Genetic Algorithm (유전자 알고리즘을 이용한 결정 궤환 등화기의 탭 길이 최적화)

  • Son, Ji-hong;Kim, Ki-man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1765-1772
    • /
    • 2015
  • In the underwater acoustic communication channels, multipath reflection become the cause of obstacle. Generally, equalizer has been applied to overcome these problems. In this paper, the method was proposed to optimize tap-length of decision feedback equalizer using genetic algorithm. After inputting feed-forward filter length and feed-back filter length as genetic information of the genetic algorithm, it optimize tap-length using BER(bit error rate) calculation in accordance with object function. The object function consist of decision feedback equalizer and BER calculation. For the purpose of BER calculation in the object function, the method was proposed to optimize the tap-length of decision feedback equalizer with genetic algorithm using preamble signals. As a result of experiments, the optimized BER is 0.0355 for signals which were received through a 25m receiver and which were applied to calculate BER merely using preamble signals in object function. When all data were used to calculate BER in object function, the optimized BER is 0.0215.