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Distributed Decision-Making in Wireless Sensor Networks
for Online Structural Health Monitoring

Qing Ling, Zhi Tian, and Yue Li

Abstract: In a wireless sensor network (WSN) setting, this paper
presents a distributed decision-making framework and illustrates
its application in an online structural health monitoring (SHM) sys-
tem. The objective is to recover a damage severity vector, which
identifies, localizes, and quantifies damages in a structure, via dis-
tributive and collaborative decision-making among wireless sen-
sors. Observing the fact that damages are generally scarce in a
structure, this paper develops a nonlinear 0-norm minimization
formulation to recover the sparse damage severity vector, then re-
laxes it to a linear and distributively tractable one. An optimal al-
gorithm based on the alternating direction method of multipliers
(ADMM) and a heuristic distributed linear programming (DLP)
algorithm are proposed to estimate the damage severity vector dis-
tributively. By limiting sensors to exchange information among
neighboring sensors, the distributed decision-making algorithms
reduce communication costs, thus alleviate the channel interfer-
ence and prolong the network lifetime. Simulation results in mon-
itoring a steel frame structure prove the effectiveness of the pro-
posed algorithms,

Index Terms: Distributed decision-making, structural health mon-
itoring (SHM), wireless sensor networks (WSNs).

I. INTRODUCTION

Recent development in micro-fabrication and wireless com-
munication technologies enables the application of wireless sen-
sor networks (WSNs), which consist of spatially distributed sen-
sors with embedded sensing, computation, and wireless commu-
nication capabilities [1]. Accompanied with the unprecedented
data collection opportunities, new challenges also emerge due
to two main constraints in network resources: Communication
bandwidth and battery power. In a large-scale centralized net-
work, extensive communication between wireless sensors and
the fusion center results in strong interference, as well as consti-
tutes the main source of energy consumption.

To meet the rigid bandwidth and energy constraints, dis-
tributed in-network processing has attracted interest in a wide
range of areas, such as classification [2], estimation [3], con-
sensus [4], and learning [5]. Without using any fusion center,
decisions are made in a collaborative manner via local informa-
tion exchange among one-hop neighboring sensors.

This paper considers the application of distributed decision-
making in an online structural health monitoring (SHM) sys-
tem. SHM refers to the process of damage detection for civil,
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aerospace and mechanical engineering systems [6]. Here the
damage is defined as changes to the material or geometric prop-
erties of these systems due to either internal factors such as ag-
ing, or exterior forces such as natural disasters. Through acqui-
sition and interpretation of critical structural response data, an
online SHM system periodically assesses the health condition
of a structure at three main levels: 1) Identification of anomalies
and damages in a structure, 2) localization of damage, and 3)
quantification of damage severity [7].

Contrary to previous work which needs frequent and exten-
sive multi-hop data exchange between sensors and the fusion

center [8], [9], the proposed online SHM system emphasizes
distributed decision-making at limited communication costs. By
applying the auto-regressive and auto-regressive with exoge-
nous inputs (AR-ARX) method as the embedded damage detec-
tion approach [10], sensors independently calculate correspond-
ing damage-sensitive coefficients in each monitoring period. A
vector of damage severity coefficients, which identifies, local-
izes, and quantifies damages, is distributively solved via infor-
mation exchange among neighboring sensors. Such distributed
processing is repeated in every sampling period for online mon-
itoring during normal operations. Upon detecting damages, sen-
sors can either trigger alarms autonomously or transmit the re-
fined damage information to a central console to help repair the
structure.

The main challenges in designing the online SHM systern are
twofold: 1) How can we formulate the problem as a distribu-

tively tractable one? 2) how can we solve the problem in an
energy-efficient way? This paper contributes on both aspects, in-
cluding problem formulation and algorithm design:

1) Taking an optimization approach, we propose a series of
optimization formulations for estimating damage over a
large field. Considering damage as a rare phenomenon in
a structure, the damage severity vector only has a small
number of non-zero elements. Recognition of this impor-
tant sparsity property allows us to formulate a 0-norm min-
imization problem (P0), which recovers the sparse dam-
age severity vector from the distributed damage-sensitive
coefficients. Motivated by recent advances in compressed
sampling and sparse signal recovery [11], we relax the non-
linear O-norm minimization formulation to a linear 1-norm
minimization problem (P1) for computational tractability.
Further, to enable distributed algorithm design in the pres-
ence of the coupling effect among the decision variables
of all sensors, we introduce an approximated formulation
(Pa) which decouples sensors that are not neighbors to each
other.

2) We derive efficient iterative algorithms to recover the dam-
age severity vector in a distributed manner. The alternating
direction method of multipliers (ADMM) is adopt to pro-
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vide the optimal solution to Pa. However, ADMM gener-
ally converges slowly and needs to exchange Lagrangian
multipliers among neighboring sensors. To alleviate the
communication burden, we further propose a heuristic dis-
tributed linear programming (DLP) algorithm, which has
faster convergence rate and obviates the need of exchang-
ing extra information besides intermediate decision vari-
ables.

The methodology developed here for distributed detection,
message passing, and decision-making, also applies to other
monitoring applications of energy-constrained large-scale sen-
sor networks where the phenomena of interest are sparse.

This paper is organized as follows. Section Il surveys related
work. The AR-ARX method is described in Section III. Sec-
tion IV discusses the optimization formulations and proposes
two distributed algorithms. Simulation results are provided in
Section V to verify the effectiveness of the distributed SHM al-
gorithms. Section VI summarizes the paper.

II. RELATED WORK

In WSNs, there are four categories of infrastructures accord-
ing to the way of data processing and information transmit-
ting:

1) Centralized infrastructure: Sensors send back raw mea-

surement data to a fusion center for data processing.

2) Node-level distributed infrastructure: Sensors send back
refined data, which is extracted from the raw data, to a fu-
sion center for data processing.

3) Hierarchical infrastructure: Sensors are divided into sev-
eral clusters. Within a cluster, sensors send information
to a cluster head for data processing. Cluster heads may
exchange information with each other, make decisions col-
laboratively, and send decisions to a central console.

4) Network-wide distributed infrastructure: Each sensor ex-
changes information only with its neighboring sensors, and
makes decision autonomously. The final decisions are then
send to a central console.

In centralized and node-level distributed infrastructures, sen-
sors need to communicate with the fusion center frequently.
However, in a large-scale WSN, one-hop communication be-
tween sensors and the fusion center is generally impossible.
In the hierarchical infrastructure, each sensor is limited to ex-
change information with its cluster head, but it is difficult to
predefine clusters in a large-scale WSN. Furthermore, failure
of a cluster head leads to the malfunction of the whole cluster.
Hence to improve the scalability and robustness of the network,
itis preferred to apply a network-wide distributed infrastructure,
in which each sensor exchanges information among its neigh-
boring sensors and makes decision autonomously.

This paper is among the efforts toward the broad objective of
distributed in-network processing [2]-[5]. Though problem for-
mulations are different, the common design principle is to ac-
complish an otherwise centralized task in a distributive way and
to improve the scalability, robustness, and lifetime of a network.

A well-studied distributed in-network processing task is con-
sensus averaging [4], [12]. Sensors dynamically exchange cur-
rent estimates with one-hop neighbors and update their local es-

timates, until the whole network reaches consensus on an av-
eraged scalar. A more complicated task is to distributively op-
timize an objective function, which is common in estimation
and learning. In [5] and [13], separable objective functions are
optimized based on the decentralized incremental sub-gradient
approach. An estimation problem is formulated to be with a
separable objective function and a set of consensus constraints
in [14]. By iteratively updating local estimates, the network
reaches a consensus which minimizes the estimation error.

This paper considers the problem of estimating a vector for
the distributed network, though each sensor only needs to know
its own decision scalar eventually. The problem is formulated
as a linear program, in which the objective function is sep-
arable and each constraint decouples the relationship among
non-neighboring sensors. We adopt primal-dual methods, which
have been proved to be powerful tools for distributed infer-
ence {15], [16], as optimal distributed solutions. However, the
primal-dual methods generally require nontrivial rounds of iter-
ations to reach convergence, thus results in significant commu-
nication overhead. Furthermore, sensors need to exchange extra
information, such as Lagrangian multipliers, in addition to ex-
changing intermediate decision variables. By investigating the
specific problem structure, this paper also propose a heuristic
distributed algorithm, which has faster convergence rate and ex-
changes fewer information.

Our work on distributed decision-making not only contributes
to the general WSN literature as mentioned above, but also
represents a new approach to the interdisciplinary problem of
SHM using WSNs. In this paper we use the AR-ARX method
as the embedded damage identification. approach. The AR-
ARX method classifies the damaged pattern via comparing the
statistics between baseline measurements and current measure-
ments [10]. It is important to note that the proposed distributed
online SHM framework can be combined .with other damage
identification tools. For detailed review of damage identification
methods, readers are referred to [7].

Online SHM based on WSNs has emerged in recent years as
a promising technique to monitor structural health conditions.
Wireless sensors are equipped with sensing units to measure
structural responses, communication units to transmit informa-
tion without using expensive coaxial wires, and computation
units to process raw data and make decisions. Extensive survey
of SHM based on WSNs can be found in [17].

A hierarchical network infrastructure is considered in [8], in
which sensors collects raw data; while cluster heads exchange
damage information, make final decisions, and transmit to a
central console. In [9], sensors apply the AR-ARX method in
a node-level distributed manner and transmit refined data to
a fusion center. However, study of online SHM based on the
network-wide distributed infrastructure is still in its beginning
stage. In this paper, we focus on distributed decision-making for
online SHM, aiming at improving scalability and robustness of
a WSN under the constraints of bandwidth and energy.

III. AR-ARX METHOD

The AR-ARX method is a statistic pattern recognition ap-
proach which is composed of a modeling stage where the struc-
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ture is known to be undamaged, and a decision-making stage
where the damage state is unknown [10]. The basic idea is to
classify damaged patterns via comparing the statistics between
baseline measurements and current measurements.

A. AR and ARX Models

Let 2 = {2} be the time-series response of a structure at a
specific sensor location. Assuming the response to be stationary,
an AR process model is used to fit the discrete measurement
data:

p
k= E bézk_i + Tz.

g==]

1)

The response of the structure at sample time k, as denoted by
2, 1s a function of p previous observations of the system re-
sponse, plus a residual error term rf. Weights on the previous
observations of zj_; are denoted by coefficients {b; }.

It is assumed that the residual error of the AR model r is in-
fluenced by the unknown excitation. As a result, a second time-
series model, an autoregressive with exogenous inputs (ARX)
model, is chosen to model the relationship between the residual
errors and the measured response of the system:

a b
Zp = Z O Zfomi + Zﬁjrg,”j + €. )
i=1 =0

Coefficients on past measurements and the residual errors of the
AR model are {o;} and {3;}, respectively. The residual of the
ARX model €] is a damage sensitive feature being used to iden-
tify the existence of damage in the structure.

In the modeling stage, i.e., the structure is known to be un-
damaged, the AR and ARX models are constructed under var-
ious ambient vibration levels. The coefficients of models, i.e.,
{b:}, {a;}. and {B;}, and the standard variances of the resid-
uals, i.e., {o%(eZ)}, are stored in the database of each sensor,
denoted as {bPP}, {aPB}, {BP5}, and {0?(ePP)}.

B. Statistical Pattern Recognition

In the decision-making stage, an AR model is fitted based
on the response 7, of the structure in an unknown state (dam-
age or undamaged). The coefficients of the fitted AR model are
compared to the database of AR-ARX model pairs previously
calculated for the undamaged structure. A match is determined
by minimizing the Euclidian distance D of the newly derived
AR model and the database AR model coefficients, b7 and b7,
respectively. The Euclidian distance D is defined as:

14
D= (b5 —b7)% 3)
i=1

If no structural damage is experienced and the operational con-
ditions of the two models are close to one another, the selected
AR model from the database will closely approximate the mea-
sured response. If a damage has been sustained by the structure,
even the closest AR model of the database will not approximate
the measured structural response well.
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The measured response z of the structure in the unknown
state, and the residual errors r} of the fitted AR model, are sub-
stituted into the database ARX model to determine the residual
error ¢, of the ARX model:

a b
DB DB z
2 = Zai Zp_; + Zﬁé Thej + €k 4
i=1 - =0

The residual errors {€}} of the ARX model are the damage sen-
sitive feature. '

Here we briefly discuss the statistics of the residual errors.
Define the ratio of the variance of the residual errors to that in
the database as: A

o*(¢;)

y= (DB’ ()
Here 02(eZ) and 02(ef'?) are variances of the residual errors.
Suppose the models are accurate and the ambient excitations are
Gaussian random variables with zero means. Hence the residual
errors are also Gaussian variables with zero means. If the struc-
ture is undamaged, i.e., the system models remain the same, and
the noise level keeps invariant, then y follows F-distribution,
and the degree-of-freedom is equal to the length of the mea-
sured data. If the structure is damaged, i.e., coefficients of the
system models change, variance of the residual errors increases
because of model mismatch. From this angle of view, y is a
damage-sensitive coefficient.

C. Damage-Sensitive Coefficient and Severity Coefficient

Assume a large-scale WSN is deployed in a sensing area.
In the modeling stage, each sensor builds up a database for
the measured response signals. In the decision-making stage,
sensors periodically perform monitoring tasks, firstly collecting
batches of data and secondly generating damage-sensitive coef-
ficients. Based on the damage-sensitive coefficients, the dam-
ages are identified, localized, and quantified.

It has been proved in [18] that a damage-sensitive coefficient
of one sensor is composed of accumulated damage influences
of all monitoring points and a random noise. Consider sensor
4 which has a damage-sensitive coefficient y; as defined in (5).
The coefficient y; follows F-distribution if the structure is un-
damaged. Otherwise a damage-related term is appended. There-
fore, y; is the summation of a damage-related term s; and a ran-
dom variable e; with F-distribution:

Yi = 8 + e (6)

Here s; is decided by the cumulative effects of the dam-
aged points. The random variable e; is under F-distribution with
degree-of-freedom (n, n), where n is nearly the number of sam-
pling points. When n is large, the probability density function
of e; is almost symmetric with respect to e; = 1.

Suppose the large network is densely deployed such that one
damaged point is collocated with one sensor point. Therefore,
letting £ be the set of L sensors, without loss of generality, s,

can be written as:
si=Y_cifj

JEL

]
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Here c; is positive and represents the severity of the damage
point collocated with sensor j, and is defined as severity coef-
ficient of point j. The normalized basis function f;; represents
the effect of damage in point j on point . The model in (7) is
general enough to describe a wide range of structural damage
behavior, provided that the parameters {f;;} can be acquired
via, say, statistical learning and/or domain knowledge. Since
the focus of this paper is on information processing using sen-
sor networks, we investigate regular-shaped structures as an il-
lustrative example for clear exposition on the algorithm design.
In this case, one critical observation based on simulation vali-
dation is that, the influence of one damage decreases as the dis-
tance from the damage increases. Generally speaking, this kind
of influence can be described by an isotropic Gaussian-shaped
basis function: .

fii = emlen, 8)

Here d; is the distance between j and ¢ and o is the known im-
pact coefficient of j. The isotropic Gaussian-shaped basis func-
tion assumes isotropic influence of a damage point, which is
adopted for analytical convenience but still able to approximate
most practical cases in regular-shaped structures.

IV. DISTRIBUTED SHM ALGORITHMS

In this section, we formulate the SHM task as a nonlinear 0-
norm minimization problem and then relax it to a 1-norm linear
program. The centralized formulation is further slightly mod-
ified to make distributed processing possible. An optimal al-
gorithm based on the ADMM and a heuristic DLP algorithm
are proposed to estimate damage severity coefficients in a dis-
tributed way.

A. Problem Formulation

Combining (6)—(8), the objective of the SHM task is to re-
cover {c;} from noise-polluted measurements {y;} and known
{d;;} and {o;}. Note that for two neighboring sensors ¢ and j,
d;; can be obtained in initializing the network. Therefore the ba-
sis function value f;; is known by (8) in advance. Our novel idea
hinges on a key observation that damages are generally scarce in
a structure from an engineering perspective. Hence, the severity
vector c=[cy, - - -, cz,]T, which is a concatenation of the severity
coefficients, is sparse. Sparsity of ¢ can be measured by 0-norm
llello which counts the number of nonzeros of ¢. Capitalizing
on the sparse nature of ¢, we propose a 0-norm minimization
formulation PO:

min ||ello

s.L. 'yz — ijicj — 1‘ < H,Vz S E7
jEL
¢ >0, € L. )

We predefine a common threshold 6 and impose a constraint
lei — 1| = |y — > e fiicj — 1| < 0 oneach i since e; is with
mean value 1. Therefore, the resulting random noises are con-
strained to an interval. The role of the linear constraints is simi-
lar as that of the commonly used quadratic constraints in dealing
with random noises. However, the linear constraint terms may

lead to a simple heuristic distributed linear programming solu-
tion as we will discuss in this section.

The problem PO has linear constraints and a nonlinear objec-
tive function. Motivated by the recent progress on compressive
sensing [11], we relax it to a 1-norm minimization formulation,
denoted as P1:

min e[},

s.t. ‘yi — ijicj - 1| <8,Vie L,
jEL

¢ > 0,vie L. (10)
Here P1 is a standard linear program, which can be easily solved
in a centralized way. As demonstrated extensively in the com-
pressive sensing literature [11], PO and P1 may have the same
solution when ¢ is sparse enough, and the matrix composed of
the coefficients { f;; } is well conditioned.

However, to satisfy the constraint |y; — 3_,c o fric; — 11 <0
in P1 for any j, all decision variables {c;,j € L} should be
known to i. To make distributed decision-making possible, we
further introduce an approximated formulation Pa as follows:

min |e||;
st |yi — fuci — Z fiic; =1 <0, Vie L,
JEN;
¢, >0, e L. an

Here N; denotes the set of one-hop neighbors of sensor 7. Note
that the basis function is normalized such that f;; = 1. Fur-
thermore, the transmission ranges of sensors are homogeneous,
such that if 4 is a one-hop neighbor of j then j is also a one-hop
neighbor of 4. In this way, we are able to limit the information
exchange to among one-hop neighbors, as illustrated in the fol-
lowing distributed algorithms. Intuitively, the performance gap
between P1 and Pa is small if given 4, f;; is small for any j ¢ N;
and j # i. Fortunately this is generally the case in practice.
Considering the isotropic Gaussian-shaped basis function, if d;
is large enough such that j and i are not one-hop neighbor of
each other, then f;; is small.

B. Alternating Direction Method of Multipliers

Let us rewrite (11) using slack variables {s1;} and {so;} to
form the following equivalent linear program:

L
min E C;
i=1

st fuc; + Z fiic;—su+0+1—y, =0,Vie L,
JEN;

fiici + Z fiicj+ s —0+1—y;, =0,VieL,
JEN;

c; 20,81 > 0,82 >0,Vi € L. (12)

Equation (12) has an optimal iterative solution based on the
ADMM [15]. For any 7 € L, slack variables sq; and sp;, La-
grangian multipliers ~1; and o4, A1; and Ag;, and decision vari-
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able ¢; are updated for time ¢ + 1 as follows:

Su‘(t + 1) = —T%[)\li(t)}+,

s2i(t + 1) = T [A(t)] 7, (13)
1
vt + 1) = —( Y fues(t) = (i —1-0)),
v jeNUI
1
1) =—o( Y fre®) = =1+0), (14
v ojeN Ui
Mt +1) = A0alt) & - (nalt 1) — gt + 1),
Agi(t 4 1) = Agy(t) + %(72@& +1) — 54 (t + 1)), (15)
git+1) = Y (=dfier;(t+ 1)~ fighiy(t +1)
JEN;UE
— dfijezj (t + 1} — fw‘)\gj(f + 1) + 2d %Ci(t)) -1,
(16)
ht+1) = > df3,
JEN; UL
ci(t+1) = [gi(t + 1)/ha(t + D). 17)

Here [-]* denotes the projection to max{-, 0}; []~ denotes the
projection to min{-, 0}; m; denotes the number of neighbors of
sensor ¢ plus 1, namely, the number of sensors which are inside
the communication range of sensor 4; d is a constant positive
coefficient. -

According to (13)~(16), each sensor only need to know the
decision variables and Lagrangian nuultipliers of its one-hop
neighboring sensors to update its own slack variables, La-
grangian multipliers, and decision variable. In summary, we
have the following distributed ADMM solution to Pa:

Algorithm 1: ADMM

Step 1: Each sensor ¢ holds a predefined common threshold 8, a
predefined constant d, and a calculated damage-sensitive
coefficient y;. Then sensor % calculates {fj;,j € N;} by
estimating its distances from neighboring sensors. Sen-
sor 4 also calculates m; by counting the number of its
one-hop neighbors. The initial decision variable, slack
variables, and Lagrangian multipliers are all set as 0.

Step 2: Initeration ¢4 1, each sensor 7 broadcasts its current de-
cision variable ¢;(t), Lagrangian multipliers Ay;(¢) and
A2i(t), v1:(t), and ~y2;(¢) to its one neighboring sensors
jeN.

Step 3: Each sensor ¢ updates its slack variables s1;(¢ + 1) and
s2:(t + 1) according to (13), its multipliers Ay;(¢ + 1)
and Ag; (t+1) according to (14), its multipliers y1;(¢+1)
and ~y9; (t+ 1) according to (15), and its decision variable
¢;{t + 1) according to (16).

Step 4: Repeat Step 2 and Step 3 until reaching convergence.

C. Distributed Linear Programming

ADMM is an optimal solution to Pa. However, the communi-
cation load of ADMM may be high. Firstly, the convergence rate
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of ADMM is generally slow; thus a large amount of information
exchange is needed to guarantee convergence. Secondly, in each
iteration, sensors exchange not only decision variables but also
Lagrangian multipliers. Considering that communication cost is
the main source of energy consumption, the following question
arises: Can we design a more energy-efficient algorithm for a
distributed network?

This paper proposes a distributed linear programming (DLP)
algorithm to solve Pa in a more energy-efficient way. An in-
spiration for low-cost distributed processing comes from [19],
where Tseng proposed a distributed optimization framework for
linear programs satisfying a certain diagonal dominance con-
ditions. In the distributed optimization framework, an objec-
tive function is divided into uncoupled terms, and constraints
are assigned to different processors. This distributed process-
ing framework stimulates us to assign the objective function and
constraints in Pa to individual sensors as;

min ¢,

Y fue—1<8,e20.  (18)

JEN;

sty — fiici —

Solution to (17) is ¢; = [y; — 1 — 0 — Y. fici]T/ fus or
nullif y; — 14+ 6 — Zje/v;- fiic; < 0. Therefore, we have the
following distributed DLP algorithm to Pa:

Algorithm 2: DLP

Step 1: Each sensor ¢ holds a predefined common threshold 8,
and a calculated damage-sensitive coefficient y;. The ini-
tial decision variable is set as 0.

Step 2: In iteration ¢ + 1, each sensor ¢ broadcasts its current
decision variable ¢;{t) to its one neighboring sensors j €

i
Step 3: Each sensor ¢ updates its decision variable by ¢;{t + 1)
=y =103, fiic; O/ fus.

Step 4: Repeat Step 2 and Step 3 until reaching convergence.

The simplicity of DLP over ADMM is evident. Furthermore,
the convergence rate of DLP is faster than that of ADMM, and
sensors do not need to exchange extra information other than
current decision variables.

D. Application-Related Issues

In this subsection, we will discuss three application-related
issues, including selection of basis function, asynchronous opti-
mization and network robustness.

1) Selection of basis function: Selection of basis function
plays a critical role in the online SHM system. Intrinsically,
the basis function of one point is decided by the structure
itself. Since direct experiments on the structure is imprac-
tical, an alternative approach is to simulate the influence
of damages with software in advance. However, simulation
and pre-programming with respect to individual sensors are
time-consuming for a large network. Hence we rather con-
sider a general type of basis function, such as the isotropic
Gaussian shape in (8), which has been proved to be a good
approximation of practical cases. The control factor o; is
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identical for any ¢ and can be obtained from simple simu-
lation.

Selection of the basis function, combined with selection
of the communication range of sensors, is also related to
the performance gap between P1 and Pa. If the control fac-
tor o; is large while the communication range is small, in-
fluence of ¢ is underestimated in relaxing P1 to Pa; thus the
performance gap is no longer neglectable. Hence, it is es-
sential for sensors to communicate with an adequate range
in order to ensure modeling accuracy.

Let us consider the consequences of model mismatch,
namely, if o; is different from its real value. If point 7 is
damaged and o; is chosen to be larger than its real value,
then a correctly decided c; may lead to infeasibility of Pa,
since {c;,j € AN} possibly have to be negative to meet
the threshold constraints. Here the simple updating rule of
DLP shows to be robust because Step 3 in Algorithm 2 still
updates decision variables even when the Pa is infeasible.

If point ¢ is damaged and ¢; is chosen to be smaller
than its real value, then the neighboring sensors may report
damages to match the damage-related coefficients. This
directly results in false-positive alarms. An extreme set-
ting is 0; = 0, which ignores the interrelationship between
neighboring points and leads to a trivial solution, namely,
reporting the damage for point ¢ ify; — 1 > 4.

2) Asynchronous optimization: In our online monitoring
scheme, decision making is carried out in every sampling
period based on the damage-sensitive coefficients {y; } col-
lected during this period. Hence, coarse synchronization is
needed to ensure that each sensor ¢ contributes its data y;
within the right sampling period. However, in the decision-
making period, though the network is assumed to be syn-
chronized for each iteration, the ADMM and DLP algo-
rithms can be implemented asynchronously [15]. In Step 2
of Algorithms 1 and 2, sensors can no longer broadcast syn-
chronously. On the contrary, sensors hold random timers,
wake up randomly, and sends requests to neighboring sen-
sors. Upon receiving requests, sensors wake up and start to
broadcast. Then sensors turn to sleep mode to save energy.

The advantages of the asynchronous scheme are three-
fold. Firstly, sensors only need to synchronize for sampling
and decision-making periods, other than for each iteration
of the optimization process. Hence the burden of fine syn-
chronization can be avoided. Secondly, interference of syn-
chronized broadcasting is diminished via randomly asyn-
chronous broadcasting; therefore the probability of packet
loss is reduced. Thirdly, switching between random wake-
up mode and sleep mode helps the network to save energy,
thus prolongs the network lifetime.

3) Network robustness: Finally we discuss the advantage of
robustness brought by the distributed network infrastruc-
ture. In the centralized network, failure of one sensor not
only results in the loss of corresponding measurement, but
also brings difficulty for routing. Whereas in the distributed
network, simple one-hop communication is in place of end-
to-end communication between sensors and the fusion cen-
ter; hence the network robustness is improved.

Furthermore, the distributed algorithms are robust to

packet loss and communication errors. Packet loss of in-
termediate decision variables and Lagrangian multipliers
means the absence of one iteration step. According to our
discussion of asynchronous optimization, it does not affect
the convergence of the algorithms. Similarly, communica-
tion errors can be treated as perturbation of the iterations,
and do not obstruct the convergence of the algorithm as
long as the optimization formulation keeps unaltered.

V. SIMULATION RESULTS

In this section, we provide extensive simulation results to
illustrate the effectiveness of the proposed distributed online
SHM algorithms based on a two-dimensional structure model.

A. General Settings

We consider a steel frame structure with 12 stories and 9 bays,
simplified as a two-dimensional model, as in Fig. 1. A grid net-
work of 120 sensors is deployed in the joint points. The width
of a bay is 24 feet and the height of a floor is 14 feet. Am-
bient Gaussian white noises are imposed to the foundation. Re-
sponse of the structure is analyzed by the finite element program
OpenSees [20]. Damage patterns are introduced by reducing the
structural stiffness of one or several columns.

In each monitoring period of both modeling and decision-
making stages, 1000 acceleration output measurements are sam-
pled to generate AR and ARX models. The order of the AR
model is set as p = 30 in (1) and the orders of the ARX model
are set as ¢ = 5 and b = 5 in (2). After a monitoring period
of the modeling stage, each sensor stores the model information
in its database, as described in Section III-A. During a moni-
toring period of the decision-making stage, each sensor identi-
fies AR and ARX models and calculates the damage-sensitive
coefficient according to Section I1I-C. Then sensors collabora-
tively estimate the severity vector based on the distributed algo-
rithms. A sensor reports to the central console upon detecting a
damage, namely, when the corresponding severity coefficient is
larger than 0.

Here we compare the performance of four algorithms:

1) Centralized: The ADMM algorithm in which sensors have
infinite communication range. Hence it returns the opti-
mal solution to the centralized formulation P1. In the basis
function, ; = 14 for all <.

2) ADMM: The ADMM algorithm in which each sensor has a
communication range slightly larger than 24 feet. That is,
each sensor is able to communicate with 4 neighboring sen-
sors. The ADMM algorithm is optimal to the distributed
formulation Pa. In the basis function, o; = 14 for all i.

3) DLP: The DLP algorithm in which each sensor also has a
communication range slightly larger than 24 feet. In the
basis function, o; = 14 for all <.

4) Threshold: The DLP algorithm in which each sensor also
has a communication range slightly larger than 24 feet. In
the basis function, ¢; = 0 for all 4. This solution reports
damage for point i if y; — 1 > 6.

Throughout the simulations the threshold is set as # = 0.04.



356
e o
(34T (13%) (134 (135 (138 (137 (138 (139 w/”
R AR e
(20 {122) |(123) T(12.4) (125 [(126) [(32.7) T(?z‘a) 128 |12 - /
A1) 1¢11.2) |(1L3) | (114 [(11.5 [(11,8) [{3LT) (11,8L (113 ,W i -
(0,1) [{10.2) [(163) |(104) [(105} {10,8) [{19,7) J(ws) o8 oo | - -
@ o2 ey [ea |es (00 len |ea |en e |
8.1 82) (8:3) (8.4} (8,5} {8:6) 8.7} (8.8 (838 w«*' J /u
) w2 (@R (74 |05 e [mn |8 |08 w/
{&.1) {6,2) .3} (6.4} {6,5) (6.6) 8.7} {6.8) (6.8} (6,1 ’//
&.1) 8.2} 5,3y 54} 5.5) {6.:8) &7} (58) (5,9} (/5;10}//‘ e
@n ) (B8 ea [8s) 168w es [6e  elee B i
31 12 [@n B4 |35 (@) (BN |68 |9 —
L

20 {22 (@ |4 |5 (@8 2D @8
k. e <

" T

NN T T e s o
Fig. 1. Two-dimensional model of a steel frame structure with 12 sto-

ries and 9 bays. Gaussian random white noises are imposed to the
foundation to simulate ambient vibrations,

To describe the performance of the algorithms, we adopt
the following criteria: Convergence rate (which decides energy-
efficiency of the network), false-negative rate (neglecting a dam-
age when it occurs), and false-positive rate (reporting a damage
when it does not exist).

B. Single-Damage Pattern

Let us firstly consider a single-damage pattern, in which we
reduce 57% stiffness for the column between sensors (6,5) (lo-
cated in 6th floor, 5th bay) and (7,5) (located in 7th floor, 5th
bay). The spatial distribution of the damage-sensitive coeffi-
cients is shown in Fig. 2. The centralized, ADMM, and DLP
solutions all converge to a similar decision vector and report
damages in correct points, as depicted in Fig. 3. Performance
gap between the centralized and ADMM solutions are trivial,
since the distributed formulation Pa is a good approximation of
the centralized formulation P1.

Comparing the convergence rate, the ADMM solution con-
verges after 40 iterations while the DLP solution converges after
4 iterations. Furthermore, the ADMM solution requires more
information exchange per iteration. For the ADMM solution,
each sensor needs to broadcast one decision variable and four
Lagrangian multipliers in each iteration; while for the DLP so-
lution, each sensor only needs to broadcast one decision variable
in each iteration. Hence the DLP solution drastically improves
the energy-efficiency of the network.

Secondly, we still consider the single-damage pattern dis-
cussed above with 4 more data sets to study false alarms of the
three distributed algorithms. Damage identification results are
shown in Table 1. The optimal ADMM solution to Pa is some-
times infeasible because of model mismatch. The threshold al-
gorithm tends to generate false-positive alarms as it ignores in-
terrelationship between neighboring points. The DLP algorithm
is robust to model mismatch and reduces false-alarms by intro-
ducing the interrelationship.
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Fig. 2. Spatial distribution of the damage-sensitive coefficients after
introducing damage to the column between sensors (6,5) and (7,5).

Table 1. Performance of the three distributed algorithms for the
single-damage pattern,

Data  Algorithm  Feasibility  False- False-

set negative  positive
ADMM Yes 0 0

I DLP Yes 0 0
Threshold  Yes 0 0
ADMM No - -

2 DLP Yes 0 0
Threshold  Yes 0 1
ADMM No - -

3 DLP Yes 1
Threshold  Yes 1 1
ADMM Yes 0 0

4 DLP Yes 0 0
Threshold  Yes 0 1

C. Multiple-Damage Pattern

In the multiple-damage pattern, more than one columns are
damaged. Consider damage of the column beneath the sensor
(1,1) and damage of the column between sensors (6,5) and (7,5),
both with stiffness reduction as 57%. Table 2 provides simu-
lation results on 4 sets of data, in which each data set contains
1000 sampling points. The ADMM solution greatly suffers from
the infeasibility problem, while the threshold algorithm gener-
ates many false-positive alarms. On the contrary, the DLP al-
gorithm both tackles the infeasibility problem and reduces the
false-positive alarms.

D. Damage Severity

Now we discuss the ability of the online SHM algorithms,
ADMM and DLP, to evaluate damage severity. By setting stiff-
ness reduction as different levels, relative severity coefficients
are shown in Fig. 4. For each sensor point, the severity coeffi-
cient increases at the stiffness reduction increases, therefore the
proposed online SHM algorithms are able to not only localize
damage position but also quantify damage severity. It should be
noted that the severity coefficient of point (6,5) is always larger
than that of point (7,5). This common phenomenon in the AR-
ARX method indicates that damage in a column has larger effect
on the upper part of a structure than that on the lower part.
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Fig. 3. Convergence properties of the three algorithms: (a) Centralized,
(b) ADMM, and (c) DLP.

VI. CONCLUSIONS

In this paper, we discuss the distributed decision-making
problem in a large WSN, and focus on its application in on-
line SHM. Observing the fact that damages are generally scarce
in a structure, this paper develops a nonlinear 0-norm mini-
mization formulation to recover the sparse damage severity vec-
tor. Motivated by the current progress on compressive sensing,
we relax the nonlinear program to a 1-norm convex program,
and further an approximated linear program which is distribu-
tively tractable. Two algorithms, an optimal algorithm based on
ADMM and a heuristic DLP algorithm, are proposed to make
decisions in a distributive and collaborative way. The distributed
in-network processing scheme limits information exchange to
among one-hop neighboring sensors, hence improves energy-
efficiency and network robustness.

Under the context of in-network processing for WSNs, one
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Fig. 4. Sensitivity of the ADMM and DLP algorithms to stiffness reduc-
tion.

Table 2. Performance of the three distributed algorithms for the
multiple-damage pattern.

Data  Algorithm  Feasibility = False- False-

set negative  positive
ADMM No - -

1 DLP Yes 0 2
Threshold  Yes 0 15
ADMM No - -

2 DLP Yes 0 1
Threshold  Yes 0 4
ADMM No - -

3 DLP Yes 1 1
Threshold  Yes 1
ADMM No - _

4 DLP Yes 1 1
Threshold  Yes 1 1

of our future work is to consider larger sets of basis functions.
Herein choosing basis functions for better description of the
sensing field will be a challenging but interesting topic.
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