• Title/Summary/Keyword: decarboxylation

Search Result 89, Processing Time 0.023 seconds

Gene Cloning and Nucleotide Sequence of Human Dihydrolipoamide Dehydrogenase-Binding Protein

  • Lee, Jeongmin;Ryou, Chongsuk;Jeon, Bong Kyun;Lee, Poongyeon;Woo, Hee-Jong;Kwon, Moosik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2002
  • The pyruvate dehydrogenase complex (PDC), a member of $\alpha$-keto acid dehydrogenase complex, catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and $H^+$. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, we have partially cloned the gene for E3BP in human. Nine putative clones were isolated by human genomic library screening with 1.35 kb fragment of E3BP cDNA as a probe. For investigation of cloned genes, Southern blot analysis and the construction of the restriction map were performed. One of the isolated clones, E3BP741, has a 3 kb-SacI fragment, which contains 200 bp region matched with E3BP cDNA sequences. The matched DNA sequence encodes the carboxyl-terminal portion of lipoyl-bearing domain and hinge region of human E3BP. Differences between yeast E3BP and mammalian E3BP coupled with the remarkable similarity between mammalian E2 and mammalian E3BP were confirmed from the comparison of the nucleotide sequence and the deduced amino acid sequence in the cloned E3BP. Cloning of human E3BP gene and analysis of the gene structure will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

Effect of Conversion Rate of γ-Aminobutyric acid (GABA) by Yogurt Fermentation with Addition of Nanoparticle Winter Mushroom and Hydroponic Ginseng (팽이 및 수경인삼 분말 및 요구르트 발효에 의한 γ-Aminobutyric acid (GABA)의 전환효율 증진)

  • Shin, Pyung-Gyun;Kim, Hee-Cheong;Yoo, Young-Bok;Kong, Won-Sik;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.13 no.4
    • /
    • pp.334-337
    • /
    • 2015
  • ${\gamma}$-Aminobutyric acid (GABA) is basically neurotrasmitter produced by the decarboxylation of L-glutamic acid catalyzed by glutamic acid decarboxylase (GAD), which was known to convert monosodium glutamate (MSG) to GABA. To investigate enhancement of reversion rate of GABA, the yogurt fermentation with addition of nanoparticle winter mushroom and hydroponic ginseng was used. The conversion rate was revealed to nanoparticle winter mushroom and hydroponic ginseng fermenter (88%) > winter mushroom fermenter (52%) > nanoparticle winter mushroom fermenter (44%). The results showed that nanoparticle winter mushroom and hydroponic ginseng supplemented substrates for enhancement of GABA may be used more effectively as one of potential sources of functional foods.

Influence of Preparation Conditions on the Formation of Copper (II) Architectures with Pyrazine-2,3,5-tricarboxylic Acid

  • Wang, Feng-Qin;Lin, Shu;Guo, Ming-Lin;Xu, Jun-Jian;Wang, Xiao-Qing;Zhao, Yong-Nan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2351-2357
    • /
    • 2011
  • Three new metal-organic copper(II) complexes, $[Cu(H_2PZTC)_2]_n{\cdot}2nH_2O$ (1), $[Cu(HPZTC){\cdot}2H_2O]_n{\cdot}2nH_2O$ (2), and $Cu_2[(PZHD)(OH)(H_2O)_2]_n$ (3) ($H_3PZTC$ = pyrazine-2,3,5-tricarboxylic acid, $PZHD^{3-}$ = 2-hydroxypyrazine-3,5-dicarboxylate), have been synthesized from $Cu(II)/H_3PZTC$ system under different synthetic conditions, and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. In complexes 1 and 2, $H_3PZTC$ ligands loose one and two protons, which were transformed into $H_2PZTC^-$ anion and $HPZTC^{2-}$ dianion under different preparation condition, respectively. Furthermore, two ligands coordinate with Cu(II) cations in different modes, leading to the formation of the different chain structures. In complex 3, $H_3PZTC$ ligand was converted into a new ligand-PZHD by in situ decarboxylation and hydroxylation under a higher pH value than that for complexes 1 and 2. PZHD ligands link the Cu(II) cations to form a 2D layer structure. These results demonstrate that the preparation conditions, including pH value and reaction temperature etc, play an important role in the construction of complexes based on $H_3PZTC$ ligand.

Optimal Synthesis Conditions of Zinc White (아연화의 최적 합성조건)

  • Shin, Wha-Woo;Kim, Youn-Seol
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.659-665
    • /
    • 1996
  • Zinc white is mainly used as a mild astringent, protectant. and has weak antiseptic action. It is well known that the yield of zinc white produced is greatly affected by the syn thetic conditions such as the reactant concentration, reaction temperature, washing water temperature, mole ratio of reactants, and drying temperature, calcination temperature, etc. The purpose of this study is to investigate the optimal synthesis conditions of zinc white produced. A randomized complete block design suggested by G.E.P. Box and K.B. Wilson was applied for this purpose. Basic zinc carbonate was prepared by reacting zinc sulfate and sod. carbonate solution in this study. Zinc white comes when prepared by calcination of basic zinc carbonate. The optimum synthesis conditions of zinc white obtained from this study is as follows: 1) The reacting temperature range is: 92-100$^{\circ}C$, 2) The concentration of reactant solution is 23.6-27%, 3) The optimum mole-ratio: [ZnSO4]/[Na2CO3] is 1.74~1.96, 4) The washing water temperature is 36$^{\circ}C$, 5) The drying temperature range is 68-74$^{\circ}C$, 6) The calcination temperature is 600$^{\circ}C$. The outcome of DSC indicated a desolvation of basic zinc carbonate occurred at about 133.3$^{\circ}C$. The dehydration of the compound ceased at about 267.9$^{\circ}C$ and the decarboxylation ceased at about 379.9$^{\circ}C$. The physical and chemical properties of zinc white as medicine were studied by use of Volume Test.

  • PDF

UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

  • Sun, Bai-Shen;Xu, Ming-Yang;Li, Zheng;Wang, Yi-Bo;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.277-290
    • /
    • 2012
  • The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products.

Stability of Soybean Isoflavone Isomers According to Extraction Conditions

  • Choi, Yeon-Bae;Kim, Kang-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.498-503
    • /
    • 2005
  • Stability of soybean isoflavone isomers according to extraction conditions such as temperature, pH, and extracting solvents was investigated. Heating induced three chemical reactions to occur for malony1 derivatives of isoflavones, namely decarboxylation of malony1 groups into acety1 derivatives, deesterification of malony1 residues, and hydrolysis of $\beta$-glycosidic bonds. Among the twelve isoflavone isomers, change in concentrations of acety1glycosides were most pronounced: Acety1 derivatives were present only in trace amounts in unheated hypocotyls, but the content increased dramatically during heating. As for the glycosides, concentrations of daidzin and glycitin increased due to heat treatment, though that of genistin remained almost unchanged. Heat decomposition rates and the patterns differed among the three malony1 derivatives. After 120 min at $80^{circ}C$, the relative concentrations of daidzin, glycitin and genistin were increased from $9.2\%$, $12.4\%$ and $3.3\%$ to $19.3\%$, $21.9\%$ and $6.2\%$, respectively. When crude isoflavones were solubilized in glycine buffer (pH 10.0) and incubated at $80^{circ}C$, deesterification occurred faster than at pH 7.0. When the pH of isoflavone solution was increased, the malony1glycosides were hydrolyzed to their respective glycosides at increased rate. Both acetyl and aglycone forms were unchanged and only de-esterification reactions occurred. At the acidic pH, malonylglycosides were much stable both at 60 and $80^{circ}C$. However at pH 10, $80^{circ}C$ and 1 hr, $75-80\%$ of malonylglycosides were transformed to their deesterified glycosides. When isoflavones were extracted with $60\%$ aqueous ethanol at $60^{circ}C$, isoflavone isomers were stable and the deesterification reactions did not occur in these conditions. However, at $80^{circ}C$ deesterification of malonyiglycosides occurred significantly with $15-20\%$ of malonylglycosides being hydrolyzed into their respective glycosides. This experiment showed that malonylglycosides undergo decomposition when heated or exposed to alkaline conditions. Also, aqueous ethanol was preferred to aqueous methanol as solubilizing media for obtaining extract with minimum degradation of malonylglycosides.

Prevalence and Characterization of Typical Aeromonas salmonicida Chum Salmon Isolates in Korea

  • Kim, Yong-Seok;Yoon, Jang-Won;Han, Hyun-Ja;Suebsing, Rungkarn;Kim, Jeong-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.347-354
    • /
    • 2011
  • Aeromonas salmonicida is an important fish pathogen commonly associated with furunculosis in salmonids. Typical A. salmonicida strains have the surface virulence A-layer protein, a major virulence determinant encoded by the vapA gene. In this study, 880 chum salmon Oncorhynchus keta were collected from the east coast of Korea during 2006-2011, including 560 wild adults and 320 artificially hatched fry pools, and the presence of typical A. salmonicida was examined by PCR using the typical A. salmonicida-specific vapA gene primers. The results demonstrated that 34.5% of the samples (304/880 samples) were PCR positive, implying that a typical A. salmonicida infection is highly prevalent among chum salmon in Korea. Twenty typical A. salmonicida isolates were recovered based on their brown pigmentation on Trypticase Soy Agar (TSA) plates, which indicates the existence of the A-layer protein. Further biochemical analyses with the four randomly selected typical A. salmonicida isolates revealed some variations in their amino acid decarboxylation and carbohydrate fermentation activity. A phylogenetic analysis based on the entire vapA gene sequence suggested that the A. salmonicida isolates from chum salmon were clustered with those isolated from Atlantic salmon in Europe. Further study is needed to resolve such an interesting relationship in detail.

A Two-Dimensional Terrace-Like N-heterocyclic-Pb(II) Coordination Compound: Structure and Photoluminescence Property

  • Ma, Kui-Rong;Zhu, Yu-Lan;Zhang, Yu;Li, Rong-Qing;Cao, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.894-898
    • /
    • 2011
  • The first example of lead compound from $Pb(NO_3)_2$ and $H_3L$ N-heterocyclic ligand $(H_3L\;=\;(HO_2C)_2(C_3N_2)(C_3H_7)CH_2(C_6H_4)(C_6H_3)CO_2H)$, $[Pb_4(L')_4]{\cdot}5H_2O$ 1 (L' = OOC$(C_3H_7)(C_3N_2)CH_2(C_6H_4)(C_6H_3)COO)$, has been obtained under hydrothermal condition by decarboxylation, and characterized by elemental analysis, IR, TGDTA, and single-crystal X-ray diffraction. Compound 1 possesses a rare two-dimensional upper-lower offset terrace-like layer structure. In 1, crystallographic distinct Pb(II) ion adopts five-coordination geometry, and two lattice water molecules occupy the voids between 2-D layers. Results of solid state fluorescence measurement indicate that the emission band 458 nm may be assigned to $\pi^*-n$ and $\pi^*-\pi$ electronic transitions within the aromatic systems of the ligand L', however, the emission bands centred at 555 nm, 600 nm and 719 nm may be derived from phosphorescent emission ($\lambda_{excitation}$ = 390 nm).

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Crystal structure of α-acetolactate decarboxylase from Bacillus subtilis subspecies spizizenii (고초균 아종 spizizenii의 α-acetolactate decarboxylase 결정 구조)

  • Eom, Jiyoung;Oh, Han Byeol;Yoon, Sung-il
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Acetoin is generated by numerous microorganisms using ${\alpha}$-acetolactate decarboxylase (ALDC) to prevent overacidification of cells and their environment and to store remaining energy. Because acetoin has been used as a safe flavor enhancer in food products, industries have been interested in biotechnological production of acetoin using ALDC. ALDC is a metal-dependent enzyme that produces acetoin from ${\alpha}$-acetolactate through decarboxylation reaction. Here, we report the crystal structure of ALDC from Bacillus subtilis subspecies spizizenii (bssALDC) at $1.7{\AA}$ resolution. bssALDC folds into a two-domain ${\alpha}/{\beta}$ structure where two ${\beta}$-sheets form a central core. bssALDC assembles into a dimer through central hydrophobic interactions and peripheral hydrophilic interactions. bssALDC coordinates a zinc ion using three histidine residues and three water molecules. Based on comparative analyses of ALDC structures and sequences, we propose that the active site of bssALDC includes the zinc ion and its neighboring bssALDC residues.