• Title/Summary/Keyword: debris flow design

Search Result 40, Processing Time 0.028 seconds

Experimental Investigation of Effects of Sediment Concentration and Bed Slope on Debris Flow Deposition in Culvert (횡단 배수로에서 토석류 퇴적에 대한 유사농도와 바닥경사 영향 실험연구)

  • Kim, Youngil;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.467-474
    • /
    • 2011
  • Debris flow is one of the most hazardous natural processes in mountainous regions. The degradation of discharge capacity of drainage facilities due to debris flows may result in damages of properties and casualty as well as road. Understanding and accurate reproducing flow behaviour of debris flows at various conditions, such as sediment volume concentration and approaching channel and culvert slopes, are prerequisite to develop advanced design criteria for drainage facilities to prevent such damages. We carried out a series of laboratory experiments of debris flows in a rectangular channel of constant width with an abrupt change of bottom slope. The experimental flume consists of an approaching channel part with the bed slope ranging $15^{\circ}$ to $30^{\circ}$ and the test channel with slope ranging from $0^{\circ}$ to $12^{\circ}$ which mimics a typical drainage culvert. The experiments have been conducted for 22 test cases with various flow conditions of channel slopes and sediment volume concentration of debris flows to investigate those effects on the behaviour of debris flows. The results show that, according to sediment volume concentration, the depth of debris flow is approximately 50% to 150% larger than that of fresh water flow at the same flow rate. Experimental results quantitatively present that flow behaviour and deposit history of debris flows in the culvert depend on the slopes of the approaching and drainage channels and sediment volume concentration. Based on the experimental results, furthermore, a logistic model is developed to find the optimized culvert slope which prevents the debris flow from depositing in the culvert.

Simulation of the Debris Flow Using FLO-2D According to Curve-shape Changes in Bed Slopes (FLO-2D를 활용한 경사지 형상에 따른 토석류 흐름양상에 대한 수치모의)

  • Jung, Hyo Jun;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.3
    • /
    • pp.45-58
    • /
    • 2020
  • Due to a high portion of mountainous terrains in Korea, debris flow and its disasters have been increased. In addition, recently localized flash-floods caused by climate change should add frequencies and potential risks. Grasping and understanding the behaviors of debris flow would allow us to prevent the consequent disasters caused by its occurrence. In this study, we developed a number of cases by changing the bottom slopes and their curvatures and investigated their effects on potential damage caused by the debris flow using FLO-2D. As simulating each bed slopes we analyzed for velocity, depth, impact, reach distance, and reach shape. As a result the lower the average slope, the greater the influence of its curvature and the numerical results were analyzed with showed a well-marked difference in impact stress and flow velocity. The result from this study could be referred for protecting from the debris flows when design countermeasure structures in mountainous regions.

Analysis of design method on closed-type erosion control dam (불투과형 사방댐에 대한 설계기준 분석)

  • Kim, Woon-Hyung;Song, Byung-Woong;Kim, Burm-Suck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.911-920
    • /
    • 2010
  • A closed-type erosion control dam were suggested as an effective method to protect from debris flow damages caused by seasonal rainstorm, typhoon, and local heavy rain. However, design method on a closed-type erosion control dam currently practiced in the engineering is not well established with respect to type of the dam, design parameters, maintenance and so forth. In this study, design parameters for closed-type erosion control dam were evaluated and the comparison of design parameters used in Korea and Japan was performed. Based on the results of this study, modification of design method for closed-type erosion control dam are recommended.

  • PDF

Calculation of Rainfall Triggering Index (RTI) to Predict the Occurrence of Debris Flow (토석류 발생 예측을 위한 강우경보지수 산정)

  • Nam, Dong-Ho;Lee, Suk-Ho;Kim, Man-Il;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.47-59
    • /
    • 2018
  • At present, there has been a wide range of studies on debris flow in Korea, more specifically, on rainfall characteristics that trigger debris flow including rainfall intensity, rainfall duration, and preceding rainfall. the prediction of landslide / debris flow relies on the criteria for landslide watch and warning by the Korea Forest Service (KFS, 2012). Despite this, it has been found that most incidents of debris flow were caused by rainfall above the level of landslide watch, maximum hourly rainfall, extensive damage was caused even under the watch level. Under these circumstances, we calculated a rainfall triggering index (RTI) using the main factors that trigger debris flow-rainfall, rainfall intensity, and cumulative rainfall-to design a more sophisticated watch / warning criteria than those by the KFS. The RTI was classified into attention, caution, alert, and evacuation, and was assessed through the application of two debris flow incidents that occurred in Umyeon Mountain, Seoul, and Cheongju, Inje, causing serious damage and casualties. Moreover, we reviewed the feasibility of the RTI by comparing it with the KFS's landslide watch / warning criteria (KFS, 2012).

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge (소교량 유송잡물 저감시설의 비교 분석 연구)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2016
  • Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.

The Points of Issue and Countermeasure for Sediment Control Dam Designs (사방댐 설계방법의 문제점과 그 대책)

  • Kim, Woon-Hyung;Song, Byung-Woong;Kim, Burm-Suck;Kim, Ju-Han;Lee, Kyung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1057-1064
    • /
    • 2009
  • Since the global warming causes debris flow damage has increased in Kangwon Area, Sediment control dam have increasingly founded to protect the damage. In spite of the realities design methods are well not established to determine type of the dam, design parameters and maintenance. Through comparison for design methods to sediment control dam in Korea, it raised some points to improve to correspond with realities. In addition, it pointed that some issues for the sediment control dams in Kangwon Area. Those are shown that unclear positions of the dams, unremoval of sediment, occurrence of seepage under the dams and uninstallation of roads to remove sediment. In addition, the countermeasure for the issues are proposed.

  • PDF

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

Changes in Water Depth and Velocity by Debris around Piers (교각 주위내 부유잡목에 의한 수위 및 유속변화에 관한 연구)

  • Choi, Gye-Woon;Kim, Gee-Hyoung;Park, Yong-Sup
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.273-284
    • /
    • 2003
  • In this paper, the reasons of damages and the case study are review in which bridge pier with debris accumulation, and safety Influence factors by debris around the bridge piers are review. Also experiment Is conducted for the characteristic of flow around piers by different area and angle of debris and the basic characteristics was review for safe design of bridge and embankments. As result of review of several standards of design, hydraulic structure's freeboard is simply decided by discharge, so it needs more detail standards. And as result of experiment, in the case of that water depth is deep and velocity is slow, variation of water depth Is more increase as increasing of debris. Therefore the variation regime of flow characteristics like velocity and water depth by debris is more large in the stream of small or medium size, which streams have large water depth and slow velocity so Froude Number Is expressed as small in the flood. Also when Froude Number is about 0.5, the water elevation is over freeboard in the standard if the debris over 20%. Therefore when hydraulic structure is constructed in the stream of small or medium size, it need to conduct more detail experiments about influence of debris, distribution of velocity and variation of elevation, and than the more safe freeboard will be presented using the experimental results.

Design of Road Drainage for Debris Flow (토석류 고려 도로배수시설 설계 방안)

  • Lee, Yong-Soo;Choi, Chang-Ho;Chung, Ha-Ikn;Koh, Jeung-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.521-524
    • /
    • 2008
  • In addition the typhoon 'Lusa' of year 2002 has resulted 5,400 billion won of property damage and the damages for roads and railroads were approximated to be 2,860 billion won at 12,377 locations holding 53% damage of total. It was reported that the property damage due to the 2003 typhoon, 'Maemi' was 4,200 billion won. The recent typhoon, 'Aewinia', caused the 1,400 billion-won property damage including sweeping and flooding of 127 roads and 65 rivers, respectively. Therefore, this paper presented to estimate drainage size for debris flow

  • PDF

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.