• Title/Summary/Keyword: deadweight

Search Result 73, Processing Time 0.027 seconds

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

A Study on the Reduction of Over Head Crane′s Weight Considering Buckling, Vibration and Strength (좌굴, 진동, 강도를 고려한 천장크레인의 경량화에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.317-322
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. Also this paper grasped the sensitivity influenced the design variables upon the objective function and the state variables.

Slenderness Ratio Distributions and Average Compressive Strengths of Stiffened Plates Used for In-Service Vessels (실선 보강판의 세장비 분포 및 평균 압축 강도 비교 연구)

  • Nam, Ji-Myung;Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.709-718
    • /
    • 2010
  • This paper deals with two contents: first, distributions of plate slenderness ratios, stiffened plate slenderness ratios, and stiffener slenderness ratios, which include dimensions and material variables of stiffened plates, of stiffened plates of large-sized in-service vessels, and, second, comparison of compressive strengths. The investigated vessels consist of 59 tankers, 49 bulkers, 28 product carriers, 15 container carriers, and 12 multi-purpose vessels. The tankers are ranged from handymax class to VLCC and larger than Suezmax class. The sizes of the bulkers are 20K to 200K deadweight. The maximum size of containers is less than 5000TEU class. Two parameters for normal distributions of the slenderness ratios (mean and standard deviation) are suggested and probable ranges of the slenderness ratios are also graphically presented. The ultimate strengths of the stiffened plates are presented using the various simplified formulas and nonlinear FEAs. As well, average compressive strength curves, which are necessary for the estimation of the hull girder moment capacities, are proposed. It is proved that formulas for stiffened plates in CSR overestimate slightly in overall average strain range. Mode5 formula (plate buckling mode) in CSR show unreasonably conservative results with respect to the ultimate strengths rather than post-ultimate average compressive strengths.

Model tests for the inhibition effects of cohesive non-swelling soil layer on expansive soil

  • Lu, Zheng;Tang, Chuxuan;Yao, Hailin;She, Jianbo;Cheng, Ming;Qiu, Yu;Zhao, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.91-97
    • /
    • 2022
  • The cohesive non-swelling soil (CNS) cushion technology has been widely applied in the subgrade and slope improvement at expansive soil regions. However, the mechanism of the inhibition effect of the CNS layer on expansive soil (ES) has not been fully understood. We performed four outdoor model tests to further understand the inhibition effect, including different kinds of upper layer and thickness, under the unidirectional seepage condition. The swelling deformation, soil pressure, and electrical resistivity were constantly monitored during the saturation process. It is found that when a CNS layer covered the ES layer, the swelling deformation and electrical resistivity of the ES layer decreased significantly, especially the upper part. The inhibition effect of the CNS layer increases with the increase of CNS thickness. The distribution of vertical and lateral soil pressure also changed with the covering of a CNS layer. The electrical resistivity can be an effective index to describe the swelling deformation of ES layer and analyze the inhibition effect of the CNS layer. Overall, the CNS deadweight and the ion migration are the major factors that inhibit the swelling deformation of expansive soil.

Experimental study on energy dissipation and damage of fabricated partially encased composite beams

  • Wu, Kai;Liu, Xiaoyi;Lin, Shiqi;Tan, Chengwei;Lu, Huiyu
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.311-321
    • /
    • 2022
  • The interfacial bond strength of partially encased composite (PEC) structure tends to 0, therefore, the cast-in-place concrete theoretically cannot embody better composite effect than the fabricated structure. A total of 12 specimens were designed and experimented to investigate the energy dissipation and damage of fabricated PEC beam through unidirectional cyclic loading test. Because the concrete on both sides of the web was relatively independent, some specimens showed obvious asymmetric concrete damage, which led to specimens bearing torsion effect at the later stage of loading. Based on the concept of the ideal elastoplastic model of uniaxial tensile steel and the principle of equivalent energy dissipation, the energy dissipation ductility coefficient is proposed, which can simultaneously reflect the deformability and bearing capacity. In view of the whole deformation of the beam, the calculation formula of energy dissipation is put forward, and the energy dissipation and its proportion of shear-bending region and pure bending region are calculated respectively. The energy dissipation efficiency of the pure bending region is significantly higher than that of the shear-bending region. The setting of the screw arbors is conducive to improving the energy dissipation capacity of the specimens. Under the condition of setting the screw arbors and meeting the reasonable shear span ratio, reducing the concrete pouring thickness can lighten the deadweight of the component and improve the comprehensive benefit, and will not have an adverse impact on the energy dissipation capacity of the beam. A damage model is proposed to quantify the damage changes of PEC beams under cyclic load, which can accurately reflect the load damage and deformation damage.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.

An Analysis on Weighing the Decision Making Factors of Ship Investments for Korean Shipping Companies (우리나라 해운기업의 선박확보 투자 의사결정요인에 관한 연구)

  • Kim, Sungbum;Jung, Hyunjae;Lee, Hoyoung;Yeo, Gitae
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.2
    • /
    • pp.137-157
    • /
    • 2013
  • Korean shipping industry is ranked the fifth largest in the world in terms of deadweight tonnage after Greece, Japan, Germany and China with 55 million DWT as of year 2011, and its size of foreign exchange earning marked 30 billion US dollars. In respect of volume of seaborne trade, it has handled 99% of import and export cargoes. Korean shipping fleets have increased from 420 to 979 ships between year 2003 to year 2011. By reviewing through the relating literatures, it has been found that Shipping Funds under Ship Investment Company Act, and Tonnnage Tax System, worked as positive influences to increase the Korean shipping fleets. However, there is scant of research to examine the following two points: 1) weighing the decision making factors of ship investments for Korean shipping companies, and 2) weighing the influential factors of government shipping policies. In this respect, the aim of this study is to evaluate 8 decision making factors of ship investments for Korean shipping companies, and 8 influential factors of government shipping policies. For weighing the factors, the fuzzy methodology was adopted. As the results, for the side of decision making factors of ship investments, 'shipping market conditions and future prospects', 'ship's price and future prospects, and 'securing cargoes and future prospects' are ranked as top 3 factors. For government shipping policies side, 'shipping finance provided by lease companies', 'establishment of Korea Shipping Guarantee Fund', and 'establishment of Korea Shipping Finance Corporation' are verified as the important factors.

Equity-Efficiency Trade-off: the Case of Inheritance Tax (상속세(相續稅)에 있어서의 형평(衡平)과 효율성(效率性)의 괴리(乖離))

  • Moon, Hyung-pyo
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.97-111
    • /
    • 1990
  • This paper examines the effect of redistributive inheritance tax on income distribution and social welfare. The model used here is the Overlapping-Generations Model consisting of individuals with different bequest motives where the lifetime income distribution in each cohort is determined endogeneously by the dynamic bequest process. It is shown that the introduction of redistributive inheritance tax can improve the vertical equity in the sense that the increase in tax rate reduces the coefficient of variations of intra-cohort income distribution in steady-state. However, it is also shown that, the effect on social welfare, when measured by Benthamite SWF, is uncertain in general. The numerical simulations show that, in spite of its equity-enhancing effect, the tax increase can actually lower the steady-state social welfare within the plausible range of parametric values, through the long-run output effect as well as the deadweight welfare loss incurred by tax distortion. Hence, the problem of equity-efficiency trade-off can arise in this case. However, if both the market interest rate and the elasticity of marginal utility in individual's preference function are sufficiently high, it is shown to be possible that the steady-state social welfare is enhanced by the introduction of inheritance tax.

  • PDF

전력시장 소매가격의 규제가 사회후생에 미치는 영향

  • Kim, Hyeon-Suk;Lee, Su-Jin;Lee, Jeong-In
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.93-127
    • /
    • 2012
  • We estimate how much KEPCO can save their loss and how much social welfare can be increased by applying the real-time pricing instead of current regulated retail price in the electricity market in order to analyze the problem of the regulated retail price which is fixed below the marginal cost. We estimate the demand functions of peak time and off-peak time in summer (June to August) and winter (December to February). We construct the supply function based on hourly step-wise linear marginal cost functions, too. We find that the increase of social welfare will be 67 billion won in summer if the fixed retail price is changed into the real-time pricing scheme. The total 705 billion won will be transferred from consumer surplus to producer surplus and the rest (67 billion won) will be saved from the reduction of deadweight loss among KEPCO's loss. In winter, the increase of social surplus will be 225 billion won and 1,174 billion won of KEPCO's loss will be transferred from consumer surplus. As a result, we conclude that the regulation of the retail price in the electricity market induces the social welfare loss and KEPCO suffers a huge loss.

  • PDF

New transfer standard for low vacuum region

  • 우삼용;한승웅;김부식;이상균
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.44-44
    • /
    • 1999
  • 저진공(1 kPa~ 100 kPa)은 대기압 측정, 비행고도, 기체의 온도 측정, 질량의 부력 보정, 레이저의 굴절률 측정등에 사용되는 영역으로 과학적 중요성을 갖고 있다. 또한 대기압 이상의 압력 측정과 고진공 측정의 경계적 역할도 수행하고 있어 압력 표준기의 국제 비교에 필수적으로 권장되는 역역이다. 이 영역에 주로 사용되는 압력 표준기는 수은 압력계(Mercury manometer)와 분동식 압력계(Deadweight piston gauge or Pressure)가 있다. 이들은 이동이 불편하거나 불가능하므로 표준기의 국제 비교에 사용되는 전달 표준기로는 보다 이동이 간편한 탄성 압력계인 CDG(Capacitance diaphragm Gauge)가 있다. 이 게이지는 반도체 산업의 공정 제어용으로도 많이 사용되고 있다. 그러나 게이지와 함께 사용되는 컨트롤러의 부피가 크고 무거우며 영점 이동이 커서 측정때 마다 재조정하여야 하는 단점이 있다. 본 논문에서는 이 같은 단점을 극복하기 위해 수정빔 진동형 진공 센서를 잔달 표준기로 사용하는 것에 대한 연구를 수행하였다. 수정빔 진동형 압력 센서는 수정빔으 공진주파수가 스트레인에 비례하는 것을 이용하여 제작된 센서로 주로 대기압 이상의 고압 측정에 많이 사용되고 있다. 먼저 수정빔의 압력과 주파수간의 관계를 측정하고 또한 내장된 수정 온도센서의 공진 주파수를 측정하여 온도 보상을 위한 자료로 사용하였다. 규격에 나와 있는 수정빔의 기하학적 형상으로부터 거동에 관한 이론 모델식을 구하고 압력교정 자료로부터 얻어진 데이터를 이 식과 비교 분석하여 적합한 특성식과 인자를 구하였으며 게이지의 불확도를 추정하였다.모델은 길이가 유한한 0-차원 실린더 모델로 가정하였고, 이에 대한 기하학적 성질 및 열역학적 성질은 유효계수를 고려하여 산출하였다. 진공용기 이중 벽 내부로 흐르는 질소가스의 유량과 온도의 계산은 진공용기 내벽과 외벽을 각각 독립적인 열전달 요소로 가정하여 구성한 모델을 이용하였다. 전체 해석에서 각 열전달 요소의 비열 값은 온도에 따라 변화하는 비열의 특성을 반영하였으며. 진공용기와 플라즈마 대향 부품의 방사율(emissivity)은 앞서 가정했던 각 온도 상승 곡선에 대해서 각각 0.1, 0.2, 1.3의 경우를 가정하여 계산하였다. 직선적으로 증가하는 온도 상승 곡선중 2$0^{\circ}C$/hr의 온도상승율을 갖는 경우가 다른 베이킹 시나리오 모델에 비해 효과적이라 생각되며 초대 필요 공급열량은 200kW 정도로 산출되었다. 실질적인 수치를 얻기 위해 보다 고차원 모델로의 해석이 필요하리라 생각된다. 끝으로 장기적인 관점에서 KSTAR 장치의 베이킹 계획도 살펴본다.습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실

  • PDF