• Title/Summary/Keyword: dead reckoning

Search Result 194, Processing Time 0.024 seconds

Dynamic data Path Prediction in Network Virtual Environment

  • Jeoung, You-Sun;Ra, Sang-Dong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.83-87
    • /
    • 2007
  • This research studies real time interaction and dynamic data shared through 3D scenes in virtual network environments. In a distributed virtual environment of client-server structure, consistency is maintained by the static information exchange; as jerks occur by packet delay when updating messages of dynamic data exchanges are broadcasted disorderly, the network bottleneck is reduced by predicting the movement path by using the Dead-reckoning algorithm. In Dead-reckoning path prediction, the error between the estimated and the actual static values which is over the threshold based on the shared object location requires interpolation and multicasting of the previous location by the ESPDU of DIS. The shared dynamic data of the 3D virtual environment is implementation using the VRML.

Development of the hybrid algorithm for the car navigation system (자동차 항법용 혼합항법 알고리즘 개발)

  • 김상겸;양승규;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1403-1406
    • /
    • 1997
  • Generally, G.P.S(Global Positioning System) is using for the car navigation system but it has some restrictions such as the discontinuity of earth satellites and SA (Selective Availability). Recently, the hybrid navigation system combining with G.P.S and Dead-reckoning are much attractuve for improving the accuracy of a vehicle positioning. G.P.S called satellite navigation system, can measure its position by using satellites. Dead-Reckoning is the self-contained navigatioin system using a wheel sensor for the vehicle velocity and a gyro sensor for the vehicle angular velocity. Some algorithm could be generated for finding the vehicle position and orientation. In this paper, we developed a hybrid algotithm wiht G.P.S DR and Map-Matching.

  • PDF

계획항로를 활용한 해상교통관제사 의사결정 지원 방안

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark;Kim, Yun Ha;Kim, Gye Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.287-289
    • /
    • 2014
  • 선박의 선위 추측(DR, Dead Reckoning)은 수신되거나 측정된 위치 데이터와 속력, 침로 데이터만을 반영하여 계산하므로 대양의 항해나 연근해의 해역에서는 유효할 수 있으나 침로의 변경과 선속의 변화가 잦은 항계 내의 조선에 있어서는 적용이 어렵다는 문제점이 있다. 본 논문에서 제안하는 선박의 추측위치(DRP, Dead Reckoning Position)는 선박의 운항 패턴에 따라 항계 내의 항적 데이터를 수집하고, 수신된 위치 데이터와 속력, 침로 데이터를 점장위도항법(Mercator Sailing)을 통하여 계획항로(Planned Route)의 각 변침점(WP, Waypoint)간 침로(Course)와 항정(Ship's Passage)에 반영하였다. 제안된 추측위치 산출방법을 통하여 항계 내의 조선과정에서 계획항로를 선박의 추측위치와 결합하여 특정 시간 후의 상황패턴을 미리 예측하고 관제사의 의사결정에 기여하고자 한다.

  • PDF

Design of a navigation system using GPS and dead-reckoning (GPS와 dead-reckoning을 이용한 항법시스템 설계)

  • Kim, Jin-Won;Jee, Gyu-In;Lee, Jang-Gyu;Lee, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.188-193
    • /
    • 1996
  • In this paper, an integrated navigation system based on GPS(Global Positioning System) and Dead-Reckoning (DR) is designed. For the calibration of DR, a self-calibration method and a GPS-based calibration method are proposed. From the field-test results, it is shown that DR can be successfully calibrated by the two proposed calibration methods. Also, a cascaded filter approach and a mixed-measurement algorithm are employed for GPS/DR integration. By using the newly proposed mixed-measurement algorithm, it is shown in simulation that the position error becomes smaller than by using only DR even if the number of visible GPS satellites is less than 4.

  • PDF

Dead Reckoning Navigation System for Autonomous Mobile Robot using Indirect Feedback Kalman Filter (간접되먹임 필터를 이용한 이동로봇의 추측항법 시스템)

  • 박규철;정학영;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.827-835
    • /
    • 1999
  • In this paper, a dead reckoning navigation system for differential drive mobile robots is presented. The navigation system consists of two incremental encoders and a gyroscope. We have built a third order polynomial function for compensating the nonlinear scale factor errors of the gyroscope. We utilize an indirect Kalman filter that feeds back estimated errors to the main navigation system. Also, the observability of the filter is analyzed in order to systematically evaluate the filter's performance. Experimental results show that the proposed navigation system provides a reliable position and heading angle by mutually compensating the encoder and the gyroscope errors. The proposed filter also reduces the computational burden and enhances the navigation system's reliability. The observability analysis confirms the characteristics of inevitably unbounded position error growth in dead reckoning navigation systems.

  • PDF

A Study on Development of a Reconfigurable Mobile Robot and Dead-Reckoning Using Extended Kalman Filter (가변구조형 주행로봇 개발 및 확장형 칼만필터를 이용한 추측 항법에 대한 연구)

  • Kang, Bong-Soo;Yeo, Gee-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2009
  • This paper presents design concepts of a reconfigurable mobile robot for both of indoor and outdoor applications. A linkage mechanism and wheel-in-motors give the proposed mobile robot various driving modes in maneuver and good adaptability to irregular surface. Since the mobile robot receives multiple sensor signals from odometers and an orientation sensor, states related to the position and the orientation of the mobile robot are optimally estimated by an extended Kalman filter. Simulations and experimental results show that the performance of dead reckoning on estimating the pose of a mobile robot can be improved remarkably by the optimal state observer.

Odometry Error Correction with a Gyro Sensor for the Mobile Robot Localization (자이로 센서를 이용한 이동로봇 Odometry 오차 보정에 관한 연구)

  • Park Shi-Na;Hong Hyun-Ju;Choi Won-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.65-67
    • /
    • 2006
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

Landmark based Localization System of Mobile Robots Considering Blind Spots (사각지대를 고려한 이동로봇의 인공표식기반 위치추정시스템)

  • Heo, Dong-Hyeog;Park, Tae-Hyoung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.156-164
    • /
    • 2011
  • This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.

Precision Calibration of Gyroscopes for Improving Dead-Reckoning Accuracy in Mobile Robots (이동로봇의 추측항법 정확성을 개선하기 위한 자이로스코프의 정확도 교정)

  • Ko Jae-Pyung;Yun Jae-Mu;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2005
  • This paper describes a method aimed at improving dead-reckoning accuracy with gyroscopes in mobile robots. The method is a precision calibration procedure for gyroscopes, which effectively reduces the ill effects of nonlinearity of the scale-factor and temperature dependency. This paper also describes the methods of gyro data collection fur all ambient temperature$(-40^{\circ}C{\~}+80^{\circ}C)$ using cubic spline interpolation and defining the error function. The sensor used was a vibrating gyroscope called the EWTS82NA21, which is low lost and commonly used in car navigation system, made by Panasonic. This angular rate sensor utilizes Coriolis force generated by a vibrating tuning fork. The paper also provides experimental results to check the performance and the effectiveness of the proposed method.

Autonomous Cooperative Localization of Mobile Sensors (자율적 상호협동을 통한 모바일 센서의 자기위치파악)

  • Song, Ha-Yoon
    • The KIPS Transactions:PartA
    • /
    • v.17A no.2
    • /
    • pp.53-62
    • /
    • 2010
  • Mobile Sensor Vehicles, nodes of Mobile Sensor Network, are navigating for a specific, maybe unknown, region. For the precise usage of MSN, MSV has to be able to do localization by integrating information through communication by each other. In addition, MSV should be localized with various sensors equipped. In this research, we propose a set of techniques that improve accuracy using human mimic by combining and exploiting the existing techniques such as Dead-Reckoning, Computer Vision and Received Signal Strength Identification.