• Title/Summary/Keyword: deactivated

Search Result 134, Processing Time 0.025 seconds

Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System

  • Lueangjaroenkit, Piyangkun;Teerapatsakul, Churapa;Sakka, Kazuo;Sakka, Makiko;Kimura, Tetsuya;Kunitake, Emi;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.217-229
    • /
    • 2019
  • Two manganese peroxidases (MnPs), MnP1 and MnP2, and a laccase, Lac1, were purified from Trametes polyzona KU-RNW027. Both MnPs showed high stability in organic solvents which triggered their activities. Metal ions activated both MnPs at certain concentrations. The two MnPs and Lac1, played important roles in dye degradation and pharmaceutical products deactivation in a redox mediator-free system. They completely degraded Remazol brilliant blue (25 mg/L) in 10-30 min and showed high degradation activities to Remazol navy blue and Remazol brilliant yellow, while Lac1 could remove 75% of Remazol red. These three purified enzymes effectively deactivated tetracycline, doxycycline, amoxicillin, and ciprofloxacin. Optimal reaction conditions were $50^{\circ}C$ and pH 4.5. The two MnPs were activated by organic solvents and metal ions, indicating the efficacy of using T. polyzona KU-RNW027 for bioremediation of aromatic compounds in environments polluted with organic solvents and metal ions with no need for redox mediator supplements.

Assessment of the ozonation against pathogenic bacteria in the effluent of the quarantine station

  • Park, Seon Yeong;Kim, Joo Han;Kim, Chang Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • This study investigated how ozone treatment can successfully inactivate pathogenic bacteria in both artificial seawater and effluents discharged from the fishery quarantine station in Pyeongtaek Port, Korea. Vibrio sp. and Streptococcus sp. were initially inoculated into the artificial seawater. All microbes were almost completely inactivated within 10 min and 30 min by injecting 6.4 mg/min and 2.0 mg/min of ozone, respectively. It was discovered that the water storing Pleuronichthys, Pelteobagrus, and Cyprinus imported from China contained the indicator bacteria, Vibrio sp., Enterococcus sp., total coliforms, and heterotrophic microorganisms. Compared to the control, three indicator bacteria were detected at two to six times higher concentrations. The water samples displayed a diverse microbial community, comprising the following four phyla: Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria. Almost all indicator bacteria were inactivated in 5 min at 2.0 mg/min of ozonation; comparatively, 92.9%-98.2% of the less heterotrophic microorganisms were deactivated within the same time period. By increasing the dosage to 6.4 mg/min, 100% deactivation was achieved after 10 min. Despite the almost complete inactivation of most indicator bacteria at high doses after 10 min, several bacterial strains belonging to the Proteobacteria have still been found to be resistant under the given operational conditions.

Study on the Mechanism and Modeling for Super-filling of High-Aspect-Ratio Features with Copper by Catalyst Enhanced Chemical Vapor Deposition Coupled with Plasma Treatment (플라즈마 처리와 결합된 Cu 촉매반응 화학기상증착법의 메커니즘과 고종횡비 패턴의 충진양상 전산모사에 대한 연구)

  • Kim, Chang-Gyu;Lee, Do-Seon;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • The mechanism behind super-filling of high-aspect-ratio features with Cu by catalyst-enhanced chemical vapor deposition (CECVD) coupled with plasma treatment is described and the metrology required to predict the filling feasibility is identified and quantified. The reaction probability of a Cu precursor was determined as a function of substrate temperature. Iodine adatoms are deactivated by the bombardment of energetic particles and also by the overdeposition of sputtered Cu atoms during the plasma treatment. The degree of deactivation of adsorbed iodine was experimentally quantified. The quantified factors, reaction probability and degree of deactivation of iodine were introduced to the simulation for the prediction of the trench filling aspect by CECVD coupled with plasma treatment. Simulated results show excellent agreement with the experimental filling aspects.

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon;Kim, Hyun Ju;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1919-1926
    • /
    • 2020
  • CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Immobilization of Diatom Phaeodactylum tricornutum with Filamentous Fungi and Its Kinetics

  • Tyler J. Barzee;Hamed M. El-Mashad;Andrew R. Burch;Annaliese K. Franz;Ruihong Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.251-259
    • /
    • 2023
  • Immobilizing microalgae cells in a hyphal matrix can simplify harvest while producing novel mycoalgae products with potential food, feed, biomaterial, and renewable energy applications; however, limited quantitative information to describe the process and its applicability under various conditions leads to difficulties in comparing across studies and scaling-up. Here, we demonstrate the immobilization of both active and heat-deactivated marine diatom Phaeodactylum tricornutum (UTEX 466) using different loadings of fungal pellets (Aspergillus sp.) and model the process through kinetics and equilibrium models. Active P. tricornutum cells were not required for the fungal-assisted immobilization process and the fungal isolate was able to immobilize more than its original mass of microalgae. The Freundlich isotherm model adequately described the equilibrium immobilization characteristics and indicated increased normalized algae immobilization (g algae removed/g fungi loaded) under low fungal pellet loadings. The kinetics of algae immobilization by the fungal pellets were found to be adequately modeled using both a pseudo-second order model and a model previously developed for fungal-assisted algae immobilization. These results provide new insights into the behavior and potential applications of fungal-assisted algae immobilization.

Etiology of Delayed Inflammatory Reaction Induced by Hyaluronic Acid Filler

  • Won Lee;Sabrina Shah-Desai;Nark-Kyoung Rho;Jeongmok Cho
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2024
  • The etiology and pathophysiology of delayed inflammatory reactions caused by hyaluronic acid fillers have not yet been elucidated. Previous studies have suggested that the etiology can be attributed to the hyaluronic acid filler itself, patient's immunological status, infection, and injection technique. Hyaluronic acid fillers are composed of high-molecular weight hyaluronic acids that are chemically cross-linked using substances such as 1,4-butanediol diglycidyl ether (BDDE). The mechanism by which BDDE cross-links the two hyaluronic acid disaccharides is still unclear and it may exist as a fully reacted cross-linker, pendant cross-linker, deactivated cross-linker, and residual cross-linker. The hyaluronic acid filler also contains impurities such as silicone oil and aluminum during the manufacturing process. Impurities can induce a foreign body reaction when the hyaluronic acid filler is injected into the body. Aseptic hyaluronic acid filler injections should be performed while considering the possibility of biofilm formation or delayed inflammatory reaction. Delayed inflammatory reactions tend to occur when patients experience flu-like illnesses; thus, the patient's immunological status plays an important role in delayed inflammatory reactions. Large-bolus hyaluronic acid filler injections can induce foreign body reactions and carry a relatively high risk of granuloma formation.

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

A Study on the Regeneration of Ni Catalyst for Hydrogenation (I) (수소첨가반응용 니켈 폐촉매의 활성재생에 관한 연구 (I))

  • Park, Paul Worn;Lim, Ki-Chul;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 1991
  • Regeneration of Ni catalyst deactivated by carbon-deposition and sulfur-poisoning was studied. When a carbon-deposited catalyst was regenerated by hydrogen, the final recovery of catalytic activity for benzene hydrogenation was large but relatively long period of regeneration was required, and futhermore the deposited carbon could not be removed completely. In case of oxygen-treatment, the regeneration rate was high and the deposited carbon could be removed almost completely after a subsequent reduction treatment. When a sulfur-poisoned catalyst was regenerated by hydrogen and water vapor, the catalytic activity was not recovered. The regeneration treatment with oxygen at $650^{\circ}C$ recovered the catalytic activity up to 60 % of the initial value. When $Cl^-$ was added to oxygen, the activity was easily recovered to 45 % of the initial value even after treatment at $500^{\circ}C$. Sintering of the dispersed Ni particles was enhanced by water vapor but was hindered by oxygen and chlorine addition.

  • PDF

A Study on the Remanufacturing Effect of Aged Three-Way Catalysts (사용후 가솔린 자동차 삼원촉매의 재제조 효과 고찰)

  • Kwak, Seung-Min;Lim, Jong-Sun;Kim, Tae-Won;Park, Hae-Kyoung
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.430-436
    • /
    • 2009
  • Deactivated three-way catalysts which had been exposed to gasoline engine exhaust for a long time were remanufactured by ultra sonic cleaning with distilled water, sulfuric acid solution and impregnation with precious metals (Pt, Pd, Rh). The catalytic properties as well as conversion reactivity of CO, THC and NOx about fresh, aged and remanufactured catalysts were examined. Most of the pollutants deposited on the aged three-way catalysts were removed in the remanufacturing process of those catalysts. At the same time a little amount of precious metals like Pt and Pd were removed in the remanufacturing process. Under the experimental condition used in this study, in the case of the remanufactured catalysts with impregnation of precious metals, the catalytic activities were recovered to almost the same level, or higher level of that of the fresh catalyst.

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF