• Title/Summary/Keyword: deNOx

Search Result 190, Processing Time 0.018 seconds

Study on Ammonia Uniformity and DeNOx Analysis in the Urea-SCR System for Construction Machinery (건설기계용 Urea-SCR 시스템의 촉매전단에서 암모니아 균질도 해석 및 DeNOx 성능에 관한 연구)

  • Kim, Donghwan;Park, Junkyu;Kang, Joung-ho;Moon, Seonjoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.51-57
    • /
    • 2019
  • In this study, the spray atomization characteristics of urea injector used in SCR system for construction machinery was analyzed, and the uniformity index at the front of mixer and NOx conversion efficiency were evaluated through numerical analysis. Spray visualization and droplet size/velocity measurement were performed and the measured results were used to verify the spray analysis model to calculate the uniformity index in the exhaust gas after-treatment system. For the flow analysis, STAR-CCM, a three-dimensional CFD, was used and the uniformity index of the SCR system at the front of the mixer was calculated using the droplet dissociation model and the wall collision model. Finally, the DeNOx performance for the average condition of the NRTC driving mode was calculated to understand the NOx conversion efficiency reflecting the exhaust gas temperature. The simulation results show that the uniformity index at the front of mixer was calculated as 0.862 and DeNOx efficiency was 75.9%.

Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions

  • Nam, Changmo
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.809-820
    • /
    • 2018
  • DeNOx experiments for the effects of hydrocarbon additives on diesel SNCR process were conducted under oxidizing diesel exhaust conditions. A diesel-fueled combustion system was set up to simulate the actual cylinder and head, exhaust pipe and combustion products, where the reducing agent $NH_3$ and $C_2H_6/diesel$ fuel additives were separately or simultaneously injected into the exhaust pipe, used as the SNCR flow reactor. A wide range of air/fuel ratios (A/F=20~40) were maintained, based on engine speeds where an initial NOx level was 530 ppm and the molar ratios (${\beta}=NH_3/NOx$) ranged between 1.0~2.0, together with adjusting the amounts of hydrocarbon additives. Temperature windows were normally formed in the range of 1200~1350K, which were shifted downwards by 50~100K with injecting $C_2H_6/diesel$ fuel additives. About 50~68% NOx reduction was possible with the above molar ratios (${\beta}$) at the optimum flow #1 ($T_{in}=1260K$). Injecting a small amount of $C_2H_6$ or diesel fuel (${\gamma}=hydrocarbon/NOx$) gave the promising results, particularly in the lower exhaust temperatures, by contributing to the sufficient production of active radicals ($OH/O/HO_2/H$) for NOx reduction. Unfortunately, the addition of hydrocarbons increased the concentrations of byproducts such as CO, UHC, $N_2O$ and $NO_2$, and their emission levels are discussed. Among them, Injecting diesel fuel together with the primary reductant seems to be more encouraging for practical reason and could be suggested as an alternative SNCR DeNOx strategy under diesel exhaust systems, following further optimization of chemicals used for lower emission levels of byproducts.

Characterization of $TiO_2$ base catalyst for de-NOx (질소산화물 제거를 위한 $TiO_2$계 촉매 제조 및 특성 시험)

  • Kim, Tae-Hoon;Jo, Young-Min;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • One of main catalysts for De-NOx in SCR is a $V_2O_5/TiO_2$, and this work formulated powdery catalysts focusing ultimately on corrugate catalytic support. The prepared catalyst consisted of anatase $TiO_2$. Amount of the added vanadium oxide determined the viscosity of catalyst slurry, which is important for washcoat for a final corrugate type catalytic reactor. The test showed a proportional relation between adsorption amount of ammonia and specific surface area. De-NOx efficiency could be obtained up to 96.3 % at $400^{\circ}C$ with a spacial velocity of $4,000hr^{-1}$.

Development of the 120kW Class MPC Power Supply for DeNOx and DeSox System (120kW급 탈황탈질용 MPC전원장치 개발)

  • Kim, Soo-Hong;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.237-239
    • /
    • 2009
  • This paper presents a new developed 160kV-120kW Class MPC (magnetic pulse compressor) power supply for DeNOx, DeSOx system. The circuit consists of N-series connected CCPS (capacitor charging power supply) and MPC Tank. The MPC power supply developed compared to the conventional LC resonant type has many advantage, it was verified reliability of a product by module, simulator and tank connection test. Now, the developed MPC power supply is installed POSCO sintering plant for DeSOx, DeNOx system.

  • PDF

Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst (CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성)

  • Yoo, Kyung Seun;Kim, Sang Done
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2000
  • Reaction characteristics of simultaneous removal of SOx and NOx have been investigated in a thermogravimetric analyzer and tubular fixed bed reactor using the $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst. Sulfur removal capacity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is largely enhanced above both the temperature of $450^{\circ}C$ and the loading of 6wt% due to the participation of alumina support in a sulfation reaction. The NO reduction efficiency of 8wt% $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst shows the maximum value at $370^{\circ}C$ and then decreases with the increase of reaction temperature due to the oxidation of $NH_3$ gas. The presence of sulfate on the surface of sorbent/catalyst enhances the optimum reaction temperature showing the maximum deNOx efficiency. In the simultaneous removal of SOx and NOx at $250^{\circ}C$. deNOx activity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is rapidly decreased due to the formation of ammonium salts such as $NH_4HSO_4$. In the simultaneous removal reaction of SOx and NOx, the optimum temperature showing the maximum deNOx efficiency increases to $400^{\circ}C$ due to the presence of $SO_2$ gas.

  • PDF

Experimental Study on DeNOx Characteristics of Urea-SCR System (Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구)

  • Ham, Yun-Young;Lee, Seong-Ho;Jung, Hong-Seok;Shin, Dong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.

DeNOx Characteristics of Hybrid SNCR-SCR Process in a Pilot Scale Flow Reactor (파일럿 규모 반응기에서 Hybrid SNCR-SCR 공정의 질소산화물 저감 특성)

  • Eom, Won-Hyun;Yoo, Kyung-Seun;Kim, Sung-June
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • DeNOx characteristics of hybrid SNCR-SCR process have been investigated in a pilot scale flow reactor. DeNOx efficiency of SNCR reaction was about 80% at $970^{\circ}C$ and hybrid SNCR-SCR process showed 92% at $940^{\circ}C$ with NSR = 2.0. Compared to SNCR process alone, hybrid SNCR-SCR process was more effective at cool side, which is lower than $940{^{\circ}C}$. It should be also noted that ammonia slip from hybrid SNCR-SCR process was below 1ppm at the condition of higher space velocity and the required catalyst volume can be decreased to 2/3 of SCR process. Key factors for DeNOx efficiency of hybrid SNCR-SCR process were found to be $NH_3$ concentration and NOx selectivity of urea injected in SNCR process.

Performance Prediction of SCR-DeNOx System for Reduction of Diesel Engine NOx Emission (디젤엔진의 NOx 저감을 위한 SCR-DeNOx 후처리 시스템 성능 예측)

  • 김만영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.71-76
    • /
    • 2003
  • A numerical simulation of selective catalytic reduction (SCR) for NO with $NH_3$ is conducted over the $V_2O_5/TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The governing $NH_3$ and NO transport equations are considered by using the time-dependent FCT (Flux-Corrected Transport) algorithm. After a validating simulation for $NH_3$ step feed and shut-off experiments is analyzed, transient behavior of $NH_3$ and NO concentration in a SCR catalyst is investigated by changing such parameters as inflow $NH_3$ concentration, temperature of the catalyst, and $NH_3$/NOx ratios.

Volume Optimization of a Combined System of LNT and SCR Catalysts Considering Economic Feasibility and De-NOx Performance

  • Seo, Choong-Kil;Choi, Byung-Chul;Kim, Young-Kwon
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The purpose of the study is carried out volume optimization of a combined system consisting of an LNT and SCR catalysts from the standpoint of its economic feasibility and de-NOx performance. Under the rich air-fuel ratio conditions for 5s (${\Phi}$=1.1), CO, $H_2$ and THC were generated at levels of 4%, 1.2% and $110ppmC_1$, respectively. The NOx conversion of the 1+1 combination was 5% lower than that of the 1.5+0.5 combination, however the reduced volume of the LNT catalyst decreased the total cost by about 6%. Therefore, the optimal volume ratio of the LNT and SCR catalysts was found to be the 1+1 catalyst combination, which has the highest total score in the terms of an economic feasibility and the NOx performance.

A Study on NOx Reduction Efficiency according to Various Injectors used for De-NOx System (흡장형 De-NOx 촉매(LNT) 시스템의 환원제 분무용 인젝터 종류에 따른 NOx저감효율 연구)

  • Han, Young-Deok;Oh, Jung-Mo;Lee, Ki-Hyung;Lee, Jin-Ha;Mun, Woong-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.117-124
    • /
    • 2011
  • Automotive engines require strategies to fulfill the emission regulations in terms of NOx and PM. A dramatic reduction in NOx and PM emissions could be achieved with high pressure injection, innovative combustion strategies and EGR. Recently, Lean NOx Trap (LNT) and Urea-SCR are considered as more practical strategy to suppress the engine-out emissions substantially for copying with severe regulation. These systems need to reduce the reducing agent injection system which has a huge impact on NOx purification efficiency. In this paper, different three injectors have been used to investigate spray characteristics and engine emission test was conducted to clarify the effect of these injectors on the NOx reduction.