• Title/Summary/Keyword: db/db-mice

Search Result 176, Processing Time 0.024 seconds

The Hypoglycemic Effects of Acarviosine-Glucose Modulate Hepatic and Intestinal Glucose Transporters In vivo

  • Chung, Mi-Ja;Lee, Young-Soo;Kim, Byoung-Chul;Lee, Soo-Bok;Moon, Tae-Hwa;Lee, Sung-Joon;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.851-855
    • /
    • 2006
  • Acarviosine-glucose (AcvGlc) is an ${\alpha}$-glucosidase inhibitor and has similar inhibitory activity to acarbose in vitro. We synthesized AcvGlc by treating acarbose with Bacillus stearothermophilus maltogenic amylase and fed C57BL/6J and db/db mice with diets containing purified AcvGlc and acarbose for 1 week. AcvGlc (50 and 100 mg/100 g diet) significantly reduced plasma glucose and triglyceride levels in db/db mice by 42 and 51 %, respectively (p<0.0001). The hypoglycemic and hypotriglyceridemic effects of AcvGlc were slightly, but significantly, greater than those seen with acarbose treatment (p<0.0001) in C57BL/6J mice. In an oral glucose tolerance test, glucose tolerance was significantly improved at all time points (p<0.01). The expression of two novel glucose transporters (GLUTs), GLUT10 and GLUT12, were examined by Western blot analysis. GLUT10 was markedly increased in the db/db livers. After AcvGlc treatment, the expression of hepatic GLUT10 was decreased whereas intestinal GLUT12 was significantly increased in both strains of mice. Our results show that AcvGlc improves plasma lipid and glucose metabolism slightly more than acarbose. Regulation of hepatic GLUT10 and intestinal GLUT12 may be important in controlling blood glucose levels.

The Hypoglycemic Effect of Complex of Chinese Traditional Herbs (CTH) and Macelignan in Type 2 Diabetic Animal Model (레이저 제2형 당뇨동물모델에서 macelignan과 한약제 열수 추출물의 병용효과)

  • Yeo, Ji-Young;Cho, Soo-In;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1113-1120
    • /
    • 2010
  • This study investigated the efficacy of macelignan and hot water with Chinese traditional herb (CTH) extract on altering severe diabetic conditions in C57BL/KsJ-db/db mice. Previously, the anti-diabetic effects of macelignan were partly reported as a PPAR $\alpha/\gamma$-dual agonist. Here, we futher studied whether a combination of macelignan and CTH had more beneficial effects or not. The macelignan and CTH compound significantly decreased fasting blood glucose and HbA1c compared to macelignan-treated mice, and also significantly improved postprandial glucose, insulin sensitivity, and plasma lipid profiles (FFA, and TG). On the other hand, insulin levels were not significantly changed compared to the diabetic control group. There were no significant changes in the concentrations of total cholesterol and HDL-cholesterol, but there were changes in HTR and AI. These results suggest that the macelignan and CTH compound ameliorates hyperglycemia and efficiently improves postprandial glucose, insulin sensitivity, and hyperlipidemia compared with macelignan in db/db mice. Moreover, the macelignan and CTH compound seems to be more potent in affecting diabetic complications than macelignan.

Isolation and Characterization of Intestinal Immune System Modulating and Anticancer Active Fractions from the Herbal Prescriptions

  • Hwang, Jong-Hyun;Jeong, Jae-Hyun;Yu, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.323-329
    • /
    • 2009
  • The prescriptions (DB-1-DB-5) were prepared with the active herbal medicines, Acanthopanax senticosus, Glycyrrhiza uralensis, Polygonatum odoratum, and Cichorium intybus. The most active crude polysaccharide fraction (DB-2-3), which was isolated through the fractionation of hot-water extract from DB-2, was significantly reduced by periodate oxidation (52.7 and 63.7%) on intestinal immune system modulating and anticancer activity. When DB-2-3 was further fractionated by column chromatographies, DB-2-3IIc-2 showed the most potent activities. In addition, DB-2-3IIc stimulated the proliferation of bone marrow cells via Peyer's patch in dose-dependent pattern by oral administration. The metastasis of colon 26-M3.1 lung carcinoma had significantly inhibited in mice fed DB-2-3IIc at 1 mg/mouse (43.8%). DB-2-3IIc-2 mainly contained uronic acid (46.1%) and 42.5% of neutral sugar with a small amount of protein (7.6%), and component sugar analysis also showed that DB-2-3IIc-2 was composed Ara, Gal, and GalA (molar ratio; 0.50:0.63:1.00). It may be suggested that activities of DB-2-3IIc-2 are resulted from pectic polysaccharides containing a polygalacturonan moiety with side chain of neutral sugars, such as Ara and Gal.

Anti-diabetic effects of Allium tuberosum rottler extracts and lactic acid bacteria fermented extracts in type 2 diabetic mice model (제2형 당뇨질환모델 db/db 마우스에서 부추 추출물 및 유산균 발효물의 항당뇨 효과)

  • Kim, Bae Jin;Jo, Seung Kyeung;Jeong, Yoo Seok;Jung, Hee Kyoung
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.134-144
    • /
    • 2015
  • The anti-diabetic effects of Allium tuberosum Rottler extracts (ATE) and ATE fermented with lactic acid bacteria in db/db mice were evaluated. The electron donating activity of ATE fermented with Lactobacillus plantarum, and Lactobacillus casei, respectively, increased compared to that of ATE, but the superoxide radical scavenging activity of the ATE incubated with L. plantarum decreased. The superoxide radical scavenging activity of the ATE fermented with both L. plantarum and L. casei was similar to that of the ATE. Therefore, fermented ATE (FATE) was prepared for in vivo testing by incubating it with both L. plantarum and L. casei. The db/db mice were divided into six groups: normal (non-diabetic mice), diabetic control (DM), and four experimental groups administered 200 or 400 mg/kg/day ATE (ATE200 and ATE400) and 200 or 400 mg/kg/day FATE (FATE200 and FATE400). Weight gain was significantly inhibited in the FATE200 group compared with that in the other db/db mice groups (p<0.05). The areas under the curve of the ATE400 and FATE400 groups were significantly smaller than that of the DM group in the glucose tolerance evaluation. The serum glucagon-like peptide-1 levels in the ATE400 and FATE400 groups increased. These results indicate that administering ATE and FATE may be effective against anti-hyperglycemia by regulating insulin resistance. In particular, FATE may be beneficial for controlling obesity in type 2 diabetes.

Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice

  • Huang, Bo;Wang, Zhiqiang;Park, Jong Hyuk;Ryu, Ok Hyun;Choi, Moon Ki;Lee, Jae-Yong;Kang, Young-Hee;Lim, Soon Sung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Recently, anthocyanins have been reported to have various biological activities. Furthermore, anthocyanin-rich purple corn extract (PCE) ameliorated insulin resistance and reduced diabetes-associated mesanginal fibrosis and inflammation, suggesting that it may have benefits for the prevention of diabetes and diabetes complications. In this study, we determined the anthocyanins and non-anthocyanin component of PCE by HPLC-ESI-MS and investigated its anti-diabetic activity and mechanisms using C57BL/KsJ db/db mice. MATERIALS/METHODS: The db/db mice were divided into four groups: diabetic control group (DC), 10 or 50 mg/kg PCE (PCE 10 or PCE 50), or 10 mg/kg pinitol (pinitol 10) and treated with drugs once per day for 8 weeks. During the experiment, body weight and blood glucose levels were measured every week. At the end of treatment, we measured several diabetic parameters. RESULTS: Compared to the DC group, Fasting blood glucose levels were 68% lower in PCE 50 group and 51% lower in the pinitol 10 group. Furthermore, the PCE 50 group showed 2-fold increased C-peptide and adiponectin levels and 20% decreased HbA1c levels, than in the DC group. In pancreatic islets morphology, the PCE- or pinitol-treated mice showed significant prevention of pancreatic ${\beta}$-cell damage and higher insulin content. Microarray analyses results indicating that gene and protein expressions associated with glycolysis and fatty acid metabolism in liver and fat tissues. In addition, purple corn extract increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6pase) genes in liver, and also increased glucose transporter 4 (GLUT4) expressions in skeletal muscle. CONCLUSIONS: Our results suggested that PCE exerted anti-diabetic effects through protection of pancreatic ${\beta}$-cells, increase of insulin secretion and AMPK activation in the liver of C57BL/KsJ db/db mice.

Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling

  • Ahn, Mi Young;Kim, Ban Ji;Yoon, Hyung Joo;Hwang, Jae Sam;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee (Bombus ignitus) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

Four months of magnetized water supplementation improves glycemic control, antioxidant status, and cellualr DNA damage in db/db mice (제2형 당뇨 모델 db/db 마우스에서 4개월의 자화수 섭취 후 혈당, 항산화 상태 및 세포 DNA 손상 개선 효과)

  • Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.401-410
    • /
    • 2016
  • Purpose: Water is magnetically charged upon contact with a magnet. Although magnetic water products have been promoted since the 1930's, they have not received wide acceptance since their effectiveness is still in question; however, some have reported their therapeutic effects on the body, especially the digestive, nervous, and urinary systems. Methods: In this study, the effect of magnetized water on glycemic control of 14 diabetic mice (CB57BK/KsJ-db/db) in comparison with 10 control mice (CB57BK/KsJ-db/+(db/+)) was investigated. Seven diabetic control (DMC) mice and seven diabetic mice + magnetized water (DM+MW) were kept for 16 weeks, followed by intraperitoneal glucose tolerance test (IPGTT). Weekly blood glucose was measured from tail veins. Blood obtained from heart puncture was used for HbA1c analysis. Results: Blood glucose level showed a significant difference starting from the $10^{th}$ week of study ($496.1{\pm}10.2mg/dl$ in DMC vs. $437.9{\pm}76.9mg/dl$ in DM+MW). Blood glucose followed by IPGTT showed no significant difference between groups at 0, 30, 60, 90, and 120 min, although glucose level at 180 min was significantly reduced in DM+MW mice. Plasma insulin level in DM+MW groups was only 39.5% of that of DMC groups ($5.97{\pm}1.69ng/ml$ in DMC vs. $2.36{\pm}0.94ng/ml$ in DM+MW). Levels of HbA1c were 12.4% and 9.7% in DMC and DM+MW groups, respectively. Conclusion: These results show the promising therapeutic effect of magnetized water in regulating blood glucose homeostasis; however, long-term supplementation or mechanistic study is necessary.

Antidiabetic Activity of Ginsam in db/db Mouse (긴삼의 db/db 마우스에서 항당뇨 효과)

  • Han, Eun-Jung;Park, Keum-Ju;Choi, Yun-Sook;Han, Ki-Chul;Park, Jong-Suk;Lee, Kyung-Hee;Ko, Sung-Kwon;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.332-337
    • /
    • 2006
  • Type 2 diabetes mellitus is a chronic and hard to control disease. In order to develop the therapeutic agent for type 2 DM, many researchers investigated natural products using an in vitro and in vivo assay. In this study, we tried to explore the anti-diabetic activity and mechanisms of ginsam, which is a vinegar-processed ginseng radix. The db/db mice were randomly divided into four groups. The diabetes control (DC) group was orally administrated with distilled water, ginseng radix (GR) or ginsam (GS) was administrated orally at a dose of 150 mg/kg, and the positive control group was orally injected with metformin (MET) at a dose of 300 mg/kg for 5 weeks in db/db mice and measured body weight and blood glucose level every week. All treatment groups decreased the plasma glucose levels compared with diabetic control and GS group significantly lowered the insulin resistance index. GS group also reduced the plasma lipid levels mainly due to reduce the lipogenesis and increase the lipolysis in the fat tissue. In addition, GS group increased the GLUT4 mRNA expression levels in the fat and muscle tissues by 10 fold probably due to increase a $PPAR_{-\gamma}$ mRNA expression in fat tissue. Taken together, GS showed the anti-hyperglycemic and anti-hyperlipidemic activities and those activities may ascribe to over-expression of GLUT4 mRNA level and decrease the lipogenesis in fat tissue.

Preventive effects of blackcurrant on glomerular fibrosis and renal dysfunction in a diabetic nephropathy model (당뇨병성 신병증 모델에서 블랙커런트의 사구체 섬유증 및 신장 기능장애 개선 효과)

  • Kim, Hye Yoom
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.561-569
    • /
    • 2021
  • Diabetic nephropathy is a major and representative complication of type 2 diabetes. Hyperglycemia increases the incidence of diabetic nephropathy, and induces kidney inflammation, thereby causing renal fibrosis, which is an important factor in the pathogenesis of diabetic nephropathy. This study investigated the effects of blackcurrant extract (BLC), which has been implicated in diabetic nephropathy in db/db mice, on glomerular fibrosis and renal dysfunction. The results showed that BLC consumption in type 2 diabetic db/db mice ameliorated diabetes-related metabolic disorders, such as insulin resistance and renal dysfunction, and significantly attenuated renal inflammation and renal fibrosis in diabetic nephropathy. In conclusion, these findings suggest that BLC consumption may help prevent renal fibrosis, inflammation, and consequent diabetic nephropathy.