Browse > Article
http://dx.doi.org/10.9721/KJFST.2021.53.5.561

Preventive effects of blackcurrant on glomerular fibrosis and renal dysfunction in a diabetic nephropathy model  

Kim, Hye Yoom (Department of Physiology, College of Oriental Medicine, Wonkwang University)
Publication Information
Korean Journal of Food Science and Technology / v.53, no.5, 2021 , pp. 561-569 More about this Journal
Abstract
Diabetic nephropathy is a major and representative complication of type 2 diabetes. Hyperglycemia increases the incidence of diabetic nephropathy, and induces kidney inflammation, thereby causing renal fibrosis, which is an important factor in the pathogenesis of diabetic nephropathy. This study investigated the effects of blackcurrant extract (BLC), which has been implicated in diabetic nephropathy in db/db mice, on glomerular fibrosis and renal dysfunction. The results showed that BLC consumption in type 2 diabetic db/db mice ameliorated diabetes-related metabolic disorders, such as insulin resistance and renal dysfunction, and significantly attenuated renal inflammation and renal fibrosis in diabetic nephropathy. In conclusion, these findings suggest that BLC consumption may help prevent renal fibrosis, inflammation, and consequent diabetic nephropathy.
Keywords
Blackcurrant; diabetes mellitus; diabetic nephropathy; renal dysfunction; renal inflammation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation,matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol. Mech. Methods. 23: 223-234 (2013).   DOI
2 Gohda T, Mima A, Moon JY, Kanasaki K. Combat diabetic nephropathy: from pathogenesis to treatment. J. Diabetes Res. 2014: 207140 (2014)
3 Zhong L, Zhang W. Protective effect of berberine on renal fibrosis caused by diabetic nephropathy. Mol. Med. Rep. 16: 1055-1062 (2017)   DOI
4 Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGF/Smad signaling by oncogenic Ras. Genes Dev. 13: 804-816(1999)   DOI
5 Gomes A., Godinho-Pereira J., Oudot C, Sequeira C.O., Macia A. Carvalho F, Motilva M.J, Pereira S.A, Matzapetakis M, Brenner C, Santos C.N. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic Biol Med. 154: 119-131 (2020)   DOI
6 Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 8: 171-179 (1997)   DOI
7 Huang JW, Chen KY, Tsai HB, Wu VC, Yang YF, Wu MS, Chu TS, Wu KD, SARS Research Group, Acute renal failure in patients with severe acute respiratory syndrome. J. Formos. Med. Assoc. 104: 891-896 (2005)
8 Gomes A, Godinho-Pereira J, Oudot C, Sequeira CO, Macia A. Carvalho F, Motilva M.J, Pereira SA, Matzapetakis M, Brenner C, Santos CN. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic. Biol. Med. 154: 119-131 (2020)   DOI
9 Kessler T, Jansen B, Hesse A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur. J. Clin. Nutr. 56: 1020-1023 (2002)   DOI
10 Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 60: 976-986 (2012)   DOI
11 Lee DH. Dipeptidyl peptidase-4 inhibitor. Korean Med. 87: 1-8 (2014)   DOI
12 Nagai K, Arai H, Yanagita M, Matsubara T, Kanamori H, Nakano T, Iehara N. Fukatsu A, Kita T, Doi T. Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabeticnephropathy. J. Biol. Chem. 278: 18229-18234 (2003)   DOI
13 Li J, Wang JJ, Kai Chen QY, Mahadev K, Zhang SX. Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes. 59: 1528-1538 (2010)   DOI
14 Lin CL, Hsu YC, Lee PH, Lei CC, Wang JY, Huang YT, Wang SY, Wang FS. Cannabinoid receptor 1 disturbance of PPAR2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renalglomeruli. J. Mol. Med. 92: 779-792 (2014)   DOI
15 Munehiro K, Yoshio O, Daisuke K. Rodent models of diabetic nephropathy: their utility and limitations. Int. J. Nephrol. Renovasc. Dis. 9: 279-290 (2016)   DOI
16 Oyaert M, Speeckaert MM, Delanghe JR. Estimated urinary osmolality based on combined urinalysis parameters: a critical evaluation. Clin. Chem. Lab Med. 57: 1169-1176 (2019)   DOI
17 Park JH, Kho MC, Kim HY, Ahn YM, Lee YJ, Kang DG, Lee HS. Blackcurrant suppresses metabolic syndrome induced by high-fructose diet in rats. Evid. Based. Complement. Alternat. Med. 2015: 385976 (2015)
18 Cortez RE, Gonzalez de Mejia E. Blackcurrants(Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 84(9): 2387-2401 (2019)   DOI
19 Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumi J, Ramos D, Ruberte J, Simo R, Hernandez C. The db/db Mouse: A Useful Model for the Study of Diabetic Retinal Neurodegeneration. PLoS One. 9: e97302 (2014)   DOI
20 Ambrozewicz E, Augustyniak A, Gegotek A, Bielawska K, Skrzydlewska E. Black-currant protection against oxidative stress formation. J. Toxicol. Environ. Health A. 76: 1293-1306 (2013)   DOI
21 Decleves AE, Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol. 6: 371-380 (2010)   DOI
22 Penno G, Garofolo M, Del Prato S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis. 26: 361-373 (2016)   DOI
23 Wang H, Guo X, Liu J, Li T, Fua X, Liu RH. Comparative suppression of NLRP3 inflammasome activation with LPS-induced inflammation by blueberry extracts (Vaccinium spp.). Chem. Soc. Rev. 7: 28931-28939 (2017)
24 Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 300(2): F301-F310 (2011)   DOI
25 Trevisan R. The role of vildagliptin in the therapy of type 2 diabetic patients with renal dysfunction. Diabetes Ther. 8: 1215-1226 (2017)   DOI
26 Twigg SM, Cooper ME. The time has come to target connective tissue growth factor in diabetic complications. Diabetologia. 47: 965-968 (2004)
27 Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci(Lond). 124: 139-152 (2013)   DOI
28 Miner JH. Type IV collagen and diabetic kidney disease. Nat. Rev. Nephrol. 16: 3-4 (2020)   DOI
29 Shin DB, Lee DW, Yang R, Kim JA, Antioxidative properties and flavonoids contents of matured Citrus peel extracts. Food Sci. Biotechnol. 15: 357-362 (2006)
30 Dong FQ, Li H, Cai WM, Tao J, Li Q, Ruan Y, Zheng FP, Zhang Z. Effects of pioglitazone on expressions of matrix metalloproteinases 2 and 9 in kidneys of diabetic rats. Chin. Med. J. 117: 1040-1044 (2004)
31 Qi C, Mao X, Zhang Z, Wu H. Classification and differential diagnosis of diabetic nephropathy. J. Diabetes Res. 2017: 8637138 (2017)
32 Ferreira NS, Bruder-Nascimento T, Pereira CA, Zanotto CZ, Prado DS, Silva JF, Rassi DM, Foss-Freitas MC, Alves-Filho JC, Carlos D, Tostes RC. NLRP3 inflammasome and mineralocorticoid receptors are associated with vascular dysfunction in type 2 diabetes mellitus. Cells. 8: 1595 (2019)   DOI
33 Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci. Tech. In press (2021)
34 Papageorgis P, Stylianopoulos T. Role of TGF in regulation of the tumor microenvironment and drugdelivery. Int. J. Oncol. 46: 933-943 (2015)   DOI
35 Ram C, Jha AK, Ghosh A, Gairola S, Syed AM, Murty US, Naidu VGM, Sahu BD. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol. 885: 173503 (2020)   DOI
36 Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am. J. Physiol. Renal Physiol. 284: F1138-F1144 (2003)
37 Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol. 17: 3093-3104 (2006)   DOI
38 Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 45: 522-530 (1996)   DOI
39 Youhua L. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7: 684-696 (2011)   DOI
40 Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis. Model Mech. 5: 444-456 (2012)   DOI
41 Thoppil RJ, Bhatia D, Barnes KF, Haznagy-Radnai E, Hohmann J, Darvesh AS, Bishayee A. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma," Curr. Cancer Drug Targets. 12: 1244-1257 (2012)
42 Bishayee A, Mbimba T, Thoppil RJ, Haznagy-Radnai E, Sipos P, Darvesh AS, Folkesson HG, Hohmann J. Anthocyaninrich blackcurrant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats, J. Nutr. Biochem, 22: 1035-1046 (2011)   DOI
43 Weekers L, Krzesinski JM. Diabetic nephropathy. Rev. Med. Liege. 60: 479-86(2005)
44 Nair AR, Elks CM, Vila J, Piero FD, Paulsen DB, Francis J. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: Potential mechanism of TLR4-MAPK signaling pathway. PLoS One. 9: e111976 (2014)   DOI
45 Twigg SM, Joly AH, Chen MM, Tsubaki J, Kim HS, Hwa V, Oh Y, Rosenfeld RG. Connective tissue growth factor/IGF-binding protein-related protein-2 is a mediator in the induction of fibronectin by advanced glycosylation end-products in human dermal fibroblasts. Endocrinology. 143: 1260-1269 (2002)   DOI
46 Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133: 124-130 (2017)   DOI
47 Szymanski MK, de Boer RA, Navis GJ, van Gilst WH, Hillege HL. Animal models of cardiorenal syndrome: a review. Heart Fail Rev. 17: 411-20 (2012)   DOI
48 Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology. 131(3): 934-945 (2006)   DOI
49 Bongartz LG, Braam B, Verhaar MC, Cramer MJ, Goldschmeding R, Gaillard CA, Doevendans PA, Joles JA. Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R815-R823 (2010)
50 Bayrasheva VK, Pchelin IY, Dobronravov VA, Babenko AY, Chefu SG, Shatalov IS, Vasilkova VN, Hudiakova NV, Ivanova AN, Andoskin PA, Grineva EN. Short-term renal and metabolic effects of low dose vildagliptin treatment added-on insulin therapy in non-proteinuric patients with type 2 diabetes: open-label randomized prospective study. Arch. Endocrinol. Metab. 64(4): 418-426 (2020).
51 Cohen MP, Lautenslager GT, Shearman CW. Increased collagen IV excretion in diabetes. A marker of compromised filtration function. Diabetes Care. 24: 914-918 (2001)   DOI
52 Cove-Smith A, Hendry BM. The regulation of mesangial cell proliferation. Nephron Exp. Nephrol. 108: e74-e79 (2008)   DOI
53 Dabla PK. Renal function in diabetic nephropathy. World J Diabetes. 1: 48-56 (2010)   DOI