• 제목/요약/키워드: daylight performance

검색결과 132건 처리시간 0.023초

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • 국제초고층학회논문집
    • /
    • 제10권1호
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

IEA 첨단채광시스템의 형상 및 특성에 관한 비교분석 (Comparative Analysis on Configurations and Characteristics of IEA's Advanced Daylighting Systems)

  • 김정태;정유근;안현태;안혁근
    • KIEAE Journal
    • /
    • 제3권1호
    • /
    • pp.45-56
    • /
    • 2003
  • New and innovative technologies for utilizing daylight in buildings have been developed for saving energies and improving visual environments. This study describes the most up-to date information available about the application and evaluation of advanced daylighting systems to enhance daylighting in non-residential buildings from IEA's Task 21. IEA's Task 21 consists on 4 subtasks such as "Performance Evaluation of Daylighting Systems(subtask A)", "Daylighting Responsive Controls(subtask B)", "Daylighting Design Tools(subtask C)" and "Case Studies(subtask D)". For the study, the configurations and characteristics of IEA's advanced daylighting systems are comparatively analyzed. As results, innovative daylighting systems are designed to redirect sunlight or skylight to areas which it is required without glare. These systems use optical devices that initiate reflection or refraction of sunlight and skylight. And they can be designed to actively track the sun or passively control the direction of sunlight and skylight. The comprehensive overview of innovative daylighting systems presented in this study helps designer to understand the advantages of daylighting in building and choose a suitable system for building in the earliest stage of the design process.

교실에서의 일반형과 루버형 차양장치의 채광성능 비교 분석 (Comparative Daylighting Performance of a Classroom with Traditional and Louver type Shading Devices)

  • 김윤정;김정태
    • KIEAE Journal
    • /
    • 제13권4호
    • /
    • pp.21-26
    • /
    • 2013
  • Shading devices have become an integral part of the daylighting strategy for sustainable classroom design. The louver type is newly designed shading devices which provide more view to the outside and protect from outside condition such as snow or rain. The purpose of this study is to compare the daylight performance of traditional and louver type overhang and lightshelf. The room dimension was $7.5m{\times}9.0m{\times}3.0m$. The length of shading devices was calculated by Palmero's study. The length of the traditional and louver type overhang was 455mm, 1210mm and lightshelf was 350/810mm, 625/555mm respectively. For the study, the Radiance 2.0 was used to evaluate the illuminance and uniformity ratios. And scale model were used to evaluate sunpatch area on the floor in model was calculated. The results showed that the louver type lightshelf was suitable for spring and summer, and louver type overhang was suitable for winter.

지하주차장 빛환경 개선을 위한 광파이프 시스템의 채광성능 평가에 관한 연구 (Performance Assessment of Light Pipe System for the Advanced Luminous Environment of the Underground Parking Lot)

  • 신주영;황태연;김정태
    • 한국태양에너지학회 논문집
    • /
    • 제30권1호
    • /
    • pp.25-33
    • /
    • 2010
  • Use of daylight in underground space interacts with physiological need for human beings and provides relief from feeling secluded. Light pipe system can deliver natural light into the space where it is needed and can be used as primary or a secondary light source with benefits of energy, productivity and health. To use light pipe system effectively under various conditions, it is important to investigate the effectiveness of light pipe system with reliable monitoring protocol. This paper presents the results of light pipe system performance used in underground parking lot under different sky conditions. Comparisons were made between the illuminance standards of underground parking lot and the monitored data. The results indicated that adequate illuminance level was shown until 4.5m distance from the light pipe under clear sky condition. However, additional lighting device showed be used under overcast sky to meet the proper illuminance level.

Survey of Electro-Optical Infrared Sensor for UAV

  • Jang, Seung-Won;Kim, Joong-Wook
    • 항공우주산업기술동향
    • /
    • 제6권1호
    • /
    • pp.124-134
    • /
    • 2008
  • The rising demand for the high efficiency and high covertness in UAV motivates the miniature design of the high performing mission sensors, or payloads. One of the promising payload sensors, EO/IR sensor has evolved satisfying its demands and became the main stand-alone mission sensor for 200kg-range UAV. One aspect in development of EO/IR sensor concerns lack of specification criterions to represent its performance. Even though the high demand and competition among each manufacturer caused EO/IR features subject to rapid change collateral to new technology, the datasheets maintained the conventional outdated formats which leave some of the major components in ambiguity. Making comparisons or predicting actual performance with such datasheets is hardly worthwhile; yet, they could be important reference guide for the potential customers what to expect for the upcoming EO/IR. According to UAS Roadmap 2007-2032 published by DoD, one of the main potential customers as well as a main investor of EO/IR technology, EO/IR is expected to play key roll in solving urgent problems, such as see and avoid system. This paper will examine the recent representative EO/IR specialized in UAS missions through datasheets to find out current trend and eventually extrapolate the possible future trend.

  • PDF

수직형 라이트파이프의 채광성능에 관한 예비평가 (Preliminary Field Test on Daylighting Performance of Perpendicular Light Pipe System)

  • 신혜미;박훈;김정태
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.53-60
    • /
    • 2008
  • The daylighting affects on the human biological cycles and physiological alterations. Daylighting is also an important element in visual comfort and it sometimes influences the quality of vision. Therefore the absence of natural light during the day brings contradictory result. To solve the problems of natural light lack and provide sufficient daylight in interior spaces, it might be necessary to apply some daylighting systems. One of these systems, light pipe system, which is simple, cheep and easily constructed, is very useful to apply for small buildings. The light pipe is simple means of directing daylighting (diffuse and direct lighting)into interior space. In order to application of light pipe system in Korea, it is necessary to optical data of light pipe system. This study aims to evaluate preliminary experiment of the daylighting environment of light pipe system. Light pipe system, that aspect ratio is 1:2(diameter and length), was installed in a windowless mock-up with $27m^2$. The mock-up model was constructed as a prototype of Korean office surface. Illuminance was measured with a Topcon IM-5 Luxmeter to evaluate the distribution of the illuminance on a floor. The indoor and outdoor illuminance and the internal/external illuminance ratio are compared to discuss with in the graphs. Luminance was measured with Radiant imaging Promertric 1400 that is digital photometer to evaluate the distribution of luminance on interior surface. The contrast of luminance is discussed with table and graphs.

중규모 사무공간에서 조명에너지 성능평가를 위한 노모그래프 개발에 관한 연구 (Development of Nomographs for the Evaluation of Lighting Energy Performance in a Semi-infinite Office Space)

  • 김한성;고동환;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.73-80
    • /
    • 2003
  • The purpose of this study was to analyze daylighting performance in a semi-infinite size office space for lighting energy conservation. DOE2.1E was used for simulations for the model space of $12\times12\times2.6m$. Nomographs were developed which could simulate work plane illuminance, glare index, energy consumption rate and energy reduction rate for daylighting design. Major results of simulations are as follows ; 1) When blinds facing south were installed, 43% of workplane illuminance diminished, but the flare index didn't exceed the recommended max-glare value. 2) In a semi-infinite office space facing south. energy consumption rate in the case space of 500 lux workplane illuminance is larger then case space of 300 lux workplane illuminance. Therefore, energy reduction rate is increased when the semi-infinite office faces south and naintains 300 lux workplane illuminance level.

비닐술폰형 반응성 염료를 이용한 오크 무늬목의 염색성 및 견뢰도 특성 (Dyeing and Fastness Properties of Oak Veneer Dyed with Vinyl Sulfone Type Reactive Dyes)

  • 조항성;심의진
    • 한국염색가공학회지
    • /
    • 제34권4호
    • /
    • pp.234-240
    • /
    • 2022
  • Use of processed timber can help reduce environmental damage and the economic burden of resources (important problems with use of raw timber) and can meet the needs of various fields where the sensibility of raw timber is required. Veneer wood is positioned as a high-value-added product due to its luxury and beauty, and it is used in various fields as a building-related material, such as interior decoration, furniture, flooring, building interior materials, and lumber. Dyeing is necessary to enhance the aesthetic appearance of this pattern and to expand its use. Therefore, in this study, we compared and analyzed the dye ability of oak-patterned materials with reactive dyes, and evaluated their performance as interior materials. As a result, the oak pattern was dyed with 9 kinds of reactive dyes and a comparative analysis was performed. The most suitable conditions are 50℃, 2 hours, and 0.5% o.w.f. In addition, evaluating resilience to daylight, resilience to rubbing, fire resistance, and flame retardance, yielded results suitable for use as an interior material. In this study, the dyeability of veneer dyed under various conditions using reactive dyes was compared and analyzed the performance as an interior material was evaluated.

A PRELIMINARY STUDY OF EFFECT OF THE GREEN FEATURE - WING WALLS ON NATURAL VENTILATION IN BUILDINGS

  • Cheuk Ming Mak;Jian Lei Niu;Kai Fat Chan
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.814-819
    • /
    • 2005
  • There is growing consciousness of the environmental performance of buildings in Hong Kong. The Buildings Department, the Lands Department and the Planning Department of the Hong Kong Government issued the first of a series of joint practice notes [1] to promote the construction of green and innovative buildings. Green features are architectural features used to mitigate migration of noise and various air-borne pollutants and to moderate the transport of heat, air and transmission of daylight from outside to indoor environment in an advantageous way. This joint practice note sets out the incentives to encourage the industry in Hong Kong to incorporate the use of green features in building development. The use of green features in building design not only improves the environmental quality, but also reduces the consumption of non-renewable energy used in active control of indoor environment. Larger window openings in the walls of a building may provide better natural ventilation. However, it also increases the penetration of direct solar radiation into indoor environment. The use of wing wall, one of the green features, is an alternative to create effective natural ventilation. This paper therefore presents a preliminary numerical study of its ventilation performance using Computational Fluid Dynamics (CFD). The numerical results will be compared with the results of the wind tunnel experiments of Givoni.

  • PDF