• 제목/요약/키워드: datasets

Search Result 2,081, Processing Time 0.022 seconds

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

Finding Top-k Answers in Node Proximity Search Using Distribution State Transition Graph

  • Park, Jaehui;Lee, Sang-Goo
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.714-723
    • /
    • 2016
  • Considerable attention has been given to processing graph data in recent years. An efficient method for computing the node proximity is one of the most challenging problems for many applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and user queries, top-k query processing has gained significant interest. This paper presents a novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized PageRank (PPR). First, we introduce a distribution state transition graph (DSTG) to depict iterative steps for solving the PPR equation. Second, we propose a weight distribution model of a DSTG to capture the states of intermediate PPR scores and their distribution. Using a DSTG, we can selectively follow and compare multiple random paths with different lengths to find the most promising nodes. Moreover, we prove that the results of our method are equivalent to the PPR results. Comparative performance studies using two real datasets clearly show that our method is practical and accurate.

A new clustering algorithm based on the connected region generation

  • Feng, Liuwei;Chang, Dongxia;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2619-2643
    • /
    • 2018
  • In this paper, a new clustering algorithm based on the connected region generation (CRG-clustering) is proposed. It is an effective and robust approach to clustering on the basis of the connectivity of the points and their neighbors. In the new algorithm, a connected region generating (CRG) algorithm is developed to obtain the connected regions and an isolated point set. Each connected region corresponds to a homogeneous cluster and this ensures the separability of an arbitrary data set theoretically. Then, a region expansion strategy and a consensus criterion are used to deal with the points in the isolated point set. Experimental results on the synthetic datasets and the real world datasets show that the proposed algorithm has high performance and is insensitive to noise.

Improving accessibility and distinction between negative results in biomedical relation extraction

  • Sousa, Diana;Lamurias, Andre;Couto, Francisco M.
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.20.1-20.4
    • /
    • 2020
  • Accessible negative results are relevant for researchers and clinicians not only to limit their search space but also to prevent the costly re-exploration of research hypotheses. However, most biomedical relation extraction datasets do not seek to distinguish between a false and a negative relation among two biomedical entities. Furthermore, datasets created using distant supervision techniques also have some false negative relations that constitute undocumented/ unknown relations (missing from a knowledge base). We propose to improve the distinction between these concepts, by revising a subset of the relations marked as false on the phenotype-gene relations corpus and give the first steps to automatically distinguish between the false (F), negative (N), and unknown (U) results. Our work resulted in a sample of 127 manually annotated FNU relations and a weighted-F1 of 0.5609 for their automatic distinction. This work was developed during the 6th Biomedical Linked Annotation Hackathon (BLAH6).

Spatial Selectivity Estimation Using Wavelet

  • Lee, Jin-Yul;Chi, Jeong-Hee;Ryu, Keun-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.459-462
    • /
    • 2003
  • Selectivity estimation of queries not only provides useful information to the query processing optimization but also may give users with a preview of processing results. In this paper, we investigate the problem of selectivity estimation in the context of a spatial dataset. Although several techniques have been proposed in the literature to estimate spatial query result sizes, most of those techniques still have some drawback in the case that a large amount of memory is required to retain accurate selectivity. To eliminate the drawback of estimation techniques in previous works, we propose a new method called MW Histogram. Our method is based on two techniques: (a) MinSkew partitioning algorithm that processes skewed spatial datasets efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. With the experimental result, we prove that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.

  • PDF

Robust Algorithms for Combining Multiple Term Weighting Vectors for Document Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Term weighting is a popular technique that effectively weighs the term features to improve accuracy in document classification. While several successful term weighting algorithms have been suggested, none of them appears to perform well consistently across different data domains. In this paper we propose several reasonable methods to combine different term weight vectors to yield a robust document classifier that performs consistently well on diverse datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max classifier that aims for robustness of the individual weight vectors by minimizing the loss of the worst-performing strategy among the base vectors. We provide efficient solution methods for these optimization problems. The effectiveness and robustness of the proposed approaches are demonstrated on several benchmark document datasets, significantly outperforming the existing term weighting methods.

Model-based Clustering of DOA Data Using von Mises Mixture Model for Sound Source Localization

  • Dinh, Quang Nguyen;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • In this paper, we propose a probabilistic framework for model-based clustering of direction of arrival (DOA) data to obtain stable sound source localization (SSL) estimates. Model-based clustering has been shown capable of handling highly overlapped and noisy datasets, such as those involved in DOA detection. Although the Gaussian mixture model is commonly used for model-based clustering, we propose use of the von Mises mixture model as more befitting circular DOA data than a Gaussian distribution. The EM framework for the von Mises mixture model in a unit hyper sphere is degenerated for the 2D case and used as such in the proposed method. We also use a histogram of the dataset to initialize the number of clusters and the initial values of parameters, thereby saving calculation time and improving the efficiency. Experiments using simulated and real-world datasets demonstrate the performance of the proposed method.

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

Improving Real-Time Efficiency of Case Retrieving Process for Case-Based Reasoning

  • Park, Yoon-Joo
    • Asia pacific journal of information systems
    • /
    • v.25 no.4
    • /
    • pp.626-641
    • /
    • 2015
  • Conventional case-based reasoning (CBR) does not perform efficiently for high-volume datasets because of case retrieval time. To overcome this problem, previous research suggested clustering a case base into several small groups and retrieving neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performance than the conventional CBR. This paper proposes a new case-based reasoning method called the clustering-merging CBR (CM-CBR). The CM-CBR method dynamically indexes a search pool to retrieve neighbors considering the distance between a target case and the centroid of a corresponding cluster. This method is applied to three real-life medical datasets. Results show that the proposed CM-CBR method produces similar or better predictive performance than the conventional CBR and clustering-CBR methods in numerous cases with significantly less computational cost.