Public domain defect data sets, such as NASA data sets which are available from the NASA MDP and PROMISE repositories, make it possible to compare the results of different defect prediction models by using the same data sets. This means that repeatable and general prediction models can be built. However, some recent studies have raised questions about the quality of two versions of NASA data set, and made new cleaned data sets by applying their data cleaning processes. We find that there are two ways in the NASA MDP versions to determine the defectiveness of a module, 0 or 1, and the two results are different in some cases. This serious problem, to our knowledge, has not been addressed in previous studies. To handle this ambiguity problem, we define two kinds of module defectiveness and two conditions that can be used to determine the ambiguous cases. We meticulously analyze 5 projects among the 13 NASA projects by using our ambiguity analysis method. The results show that JM1 and PC4 are the best projects with few ambiguous cases.
The Journal of Information Technology and Database
/
v.8
no.2
/
pp.91-101
/
2001
Previous research efforts on performance evaluation of multidimensional indexes typically have used synthetic data sets distributed uniformly or normally over multidimensional space. However, recent research research result has shown that these hinds of data sets hardly reflect the characteristics of multimedia database applications. In this paper, we discuss issues on generating high dimensional data and query sets for resolving the problem. We first identify the features of the data and query sets that are appropriate for fairly evaluating performances of multidimensional indexes, and then propose HDDQ_Gen(High-Dimensional Data and Query Generator) that satisfies such features. HDDQ_Gen supports the following features : (1) clustered distributions, (2) various object distributions in each cluster, (3) various cluster distributions, (4) various correlations among different dimensions, (5) query distributions depending on data distributions. Using these features, users are able to control tile distribution characteristics of data and query sets. Our contribution is fairly important in that HDDQ_Gen provides the benchmark environment evaluating multidimensional indexes correctly.
Kim, Myoung Soo;Jung, Hyun Kyeong;Kang, Myung Ja;Park, Nam Jung;Kim, Hyun Hee;Ryu, Jeong Mi
Journal of Korean Critical Care Nursing
/
v.12
no.1
/
pp.46-56
/
2019
Purpose : The purpose of this study was to identify minimum data sets for oral mucous integrity-related documentation and to analyze nursing records for oral care. Methods: To identify minimum data sets for oral status, the authors reviewed 26 assessment tools and a practical guideline for oral care. The content validity of the minimum data sets was assessed by three nurse specialists. To map the minimum data sets to nursing records, the authors examined 107 nursing records derived from 44 patients who received chemotherapy or hematopoietic stem cell transplantation in one tertiary hospital. Results: The minimum data sets were 10 elements such as location, mucositis grade, pain, hygiene, dysphagia, exudate, inflammation, difficulty speaking, and moisture. Inflammation contained two value sets: type and color. Mucositis grade, pain, dysphagia and inflammation were recorded well, accounting for a complete mapping rate of 100%. Hygiene (100%) was incompletely mapped, and there were no records for exudate (83.2%), difficulty speaking (99.1%), or moisture (88.8%). Conclusion: This study found that nursing records on oral mucous integrity were not sufficient and could be improved by adopting minimum data sets as identified in this study.
Fracture toughness database system was developed with Visual Foxpro 6.0 and operates in MS Windows environment. The database system contains 10,278 sets of $K_{IC}$ data, 7,046 sets of $K_{C}$ data, 784 sets of $J_{IC}$ data, 571 sets of CTOD data, 62 sets of $K_{a}$ data and 26 sets of $K_{Id}$ data. The data were collected from JSMS(Society of Material Science, Japan) fracture toughness data book and USAF(United States Air Force) crack growth database. In addition, the database was applied to predicting $K_{IC}$ from tensile material properties using artificial neural networks.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.313-318
/
2005
Estimating the reliability of protein-protein interaction data sets obtained by high-throughput technologies such as yeast two-hybrid assays and mass spectrometry is of great importance. We develop a maximum likelihood estimation method that uses both protein localization and gene expression data to estimate the reliability of protein interaction data sets. By integrating protein localization data and gene expression data, we can obtain more accurate estimates of the reliability of various interaction data sets. We apply the method to protein physical interaction data sets and protein complex data sets. The reliability of the yeast two-hybrid interactions by Ito et al. (2001) is 27%, and that by Uetz et at.(2000) is 68%. The reliability of the protein complex data sets using tandem affinity purification-mass spec-trometry (TAP) by Gavin et at. (2002) is 45%, and that using high-throughput mass spectrometric protein complex identification (HMS-PCI) by Ho et al. (2002) is 20%. The method is general and can be applied to analyze any protein interaction data sets.
This study proposes a quantification algorithm for a PLS method with several sets of variables. We called the quantification method for PLS with more than 2 sets of data a generalization. The basis of the quantification for PLS method is singular value decomposition. To derive the form of singular value decomposition in the data with more than 2 sets more easily, we used the constraint, $a^ta+b^tb+c^tc=3$ not $a^ta=1$, $b^tb=1$, and $c^tc=1$, for instance, in the case of 3 data sets. However, to prove that there is no difference, we showed it by the use of 2 data sets case because it is very complicate to prove with 3 data sets. The keys of the study are how to form the singular value decomposition and how to get the coordinates for the plots of variables and observations.
A comparison of the three land cover data sets (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, and University of Maryland: UMd), derived from 1992-1993 Advanced Very High Resolution Radiometer(AVHRR) data sets, was performed over the Asian continent. Preprocesses such as the unification of map projection and land cover definition, were applied for the comparison of the three different land cover data sets. Overall, the agreement among the three land cover data sets was relatively high for the land covers which have a distinct phenology, such as urban, open shrubland, mixed forest, and bare ground (>45%). The ratios of triple agreement (TA), couple agreement (CA) and total disagreement (TD) among the three land cover data sets are 30.99%, 57.89% and 8.91%, respectively. The agreement ratio between USGS and IGBP is much greater (about 80%) than that (about 32%) between USGS and UMd (or IGBP and UMd). The main reasons for the relatively low agreement among the three land cover data sets are differences in 1) the number of land cover categories, 2) the basic input data sets used for the classification, 3) classification (or clustering) methodologies, and 4) level of preprocessing. The number of categories for the USGS, IGBP and UMd are 24, 17 and 14, respectively. USGS and IGBP used only the 12 monthly normalized difference vegetation index (NDVI), whereas UMd used the 12 monthly NDVI and other 29 auxiliary data derived from AVHRR 5 channels. USGS and IGBP used unsupervised clustering method, whereas UMd used the supervised technique, decision tree using the ground truth data derived from the high resolution Landsat data. The insufficient preprocessing in USGS and IGBP compared to the UMd resulted in the spatial discontinuity and misclassification.
In general, the values for attribute appearing in fuzzy object-oriented data models are represented by the fuzzy sets. If it can allow the attribute values in the fuzzy object-oriented data models to be represented by the interval-valued fuzzy sets, then it can allow the fuzzy object-oriented data models to represent the attribute values in more flexible manner. The attribute values of frames appearing in the inheritance structure of the fuzzy object-oriented data models are calculated by a prloritized conjunction operation using interval-valued fuzzy sets. This approach can be applied to knowledge and information processing in which degree of membership is represented as not the conventional fuzzy sets but the interval-valued fuzzy sets.
The aim of affective engineering is to develop a new product by translating customer affections into design factors. Affective data have so far been analyzed using a multivariate statistical analysis, but the affective data do not always have linear features assumed under normal distribution. Rough sets model is an effective method for knowledge discovery under uncertainty, imprecision and fuzziness. Rough sets model is to deal with any type of data regardless of their linearity characteristics. Therefore, this study utilizes rough sets model to extract affective knowledge from affective data. Four types of scent alternatives and four types of sounds were designed and the experiment was performed to look into affective differences in subject's preference on air conditioner. Finally, the purpose of this study also is to extract knowledge from affective data using rough sets model and to figure out the relationships between rough sets based affective engineering method and statistical one. The result of a case study shows that the proposed approach can effectively extract affective knowledge from affective data and is able to discover the relationships between customer affections and design factors. This study also shows similar results between rough sets model and statistical method, but it can be made more valuable by comparing fuzzy theory, neural network and multivariate statistical methods.
Indentifying anomaly correlations between data sets is the basis for rationalizig geopotential interpretation and theory. A procedure is presented that constitutes an effective process for identifying correlative features between the two or more geopotential data sets. Anomaly features that show direct, inverse, or no correlations between the data may be separated by applying filters in the frequency domains of the data sets. The correlation filter passes or rejects wavenumbers between co-registered data sets based on the correlation coefficient between common wavenumbers as given by the cosine of their phase difference. This study includes an example of Magsat magnetic anomaly profile that illustrates the usefulness of the procedure for extracting correlative features between the data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.