파괴인성 데이터베이스 구축 및 응용

강재윤[†]·송지호*·최병익**

Development and Application of Fracture Toughness Database

Jae-Youn Kang, Ji-Ho Song and Byung-Ick Choi

Key Words: Fracture Toughness(파괴인성), Database(데이터베이스), Neural Networks(신경회로 망)

Abstract

Fracture toughness database system was developed with Visual Foxpro 6.0 and operates in MS Windows environment. The database system contains 10,278 sets of K_{IC} data, 7,046 sets of K_{C} data, 784 sets of J_{IC} data, 571 sets of CTOD data, 62 sets of K_{a} data and 26 sets of K_{Id} data. The data were collected from JSMS(Society of Material Science, Japan) fracture toughness data book and USAF(United States Air Force) crack growth database. In addition, the database was applied to predicting K_{IC} from tensile material properties using artificial neural networks.

1. 서 론

인성 또는 파괴인성이라는 말은 취성적인 파괴에 대한 재료의 저항의 척도로 이용되며, 그 평가방법에 대해서는 많은 연구가 수행되어 왔다. 강 재료의 경우에는 샤르피 충격시험에서부터 취성 균열전파정지시험까지 수많은 인성시험방법이 있고, 각각의 경우에 인성이라는 말이 사용되어 왔다. 현재는 파괴역학에 의한 인성시험규격들(ASTM E 399, ASTM E 1820, ASTM E 1290, JSME S 001, BS 5447, BS 5762 등)에 따라서평가된 균열재의 인성을 파괴인성이라고 부르는경우가 많다. 또 인성평가의 대상이 되는 현상은반드시 취성 불안정 파괴라고는 할 수 없고, 안정한 파괴도 그 대상이 된다. 인성평가의 대상

및 재료에 따라서 응력강도 계수 K, J적분, CTOD 및 다른 파괴역학 파라미터들의 사용되어지며, 여러 종류의 파괴인성이 존재한다. 본 연구에서는 파괴역학적 인성시험에 의해서 평가된 각종 재료의 파괴 인성치를 정리해서 데이터베이스를 구축하였다. 지금까지 많은 파괴인성 데이터들이 여러 논문이나 학술지등에 보고되고 있으나, 여러 곳에 산재되어 있어 정작 설계자들이사고해석이나 설계의 자료로서 이를 사용하는 데는 어려움이 있었던 것이 사실이다.

본 연구에서는 일본 재료학회 파괴인성치 데이터 북[1] 과 미 공군 균열진전 데이터베이스 시스템[2]의 파괴인성 데이터 관리구조를 참고하여 파괴인성치 데이터베이스의 표준구조를 체계화하였다. 또한 구축된 데이터베이스를 이용한 2차적인응용자료를 얻기 위하여, 본 연구에서는 데이터베이스를 이용하여 인장시험 결과로부터 평면변형률 파괴인성치(K_{IC})를 예측하는 신경회로망 모델을 제안하였으며, 그 성능을 평가하였다.

† 한국기계연구원 구조연구부

E-mail: jykang@kimm.re.kr

TEL: (042)868-7850 FAX: (042)868-7884

* 한국과학기술원 기계공학과 ** 한국기계연구원 구조연구부

Table 1 The number of fracture toughness data classified by material type and fracture toughness definition

일본재	데이터	TII D T E	17	IZ.		OTOD	IZ.	17	동나기
일본재	출처	세 뇨 구 군 	K _{IC}	K _C	J _{IC}	CTOD	K _{ld}	Ka	입계
일본재 주철,주강 11 0 37 0 0 0 48 급학회 고속도강 71 0 0 0 0 0 71 1 0 0 0 0 0 0 71 1 0 0 0 0			848	326	94	162	26	62	1,518
료학회 교속도강 71 0 0 0 0 0 0 71 전에 더 전 설강 0 0 0 6 0 0 0 0 0 22 티타늄함금 7 7 7 0 0 0 0 0 0 78 지내때inium 5000 19 44 0 0 0 0 5,408 지내때inium 7000 3413 2246 0 0 0 0 5,659 지내때inium 8000 3413 2246 0 0 0 0 0 5,659 지내때inium 8000 3413 2246 0 0 0 0 0 0 63 지내때inium casting 6 0 0 0 0 0 0 63 교리 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전			17	0		0	0	0	17
데이터 집 소결강 0 0 6 0 0 0 0 22 EI타늄합금 7 7 0 0 0 0 0 14 당스텐합금 25 0 53 0 0 0 78 Aluminium 2000/6000 alloys Aluminium 7000 alloys Aluminium 8000 alloys Aluminium 8000 alloys Aluminium 2246 0 0 0 0 0 5.659 Aluminium 8000 alloys Aluminium 8000 alloys Aluminium 7000 alloys Aluminium 7000 alloys Aluminium 8000 B 0 0 0 0 0 0 0 63 Aluminium 7000 alloys Aluminium 8000 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		T2,T0			37		0	0	48
집 알루미늄합금 0 15 7 0 0 0 0 22 EI타늄합금 7 7 7 0 0 0 0 0 14 등스텐합금 25 0 53 0 0 0 78 Aluminium 2000/6000 alloys Aluminium 5000 19 44 0 0 0 0 0 5,408 Aluminium 7000 alloys Aluminium 8000 8 0 0 0 0 0 5,659 Aluminium casting alloys Aluminium casting 6 0 0 0 0 0 0 0 6 8 Aluminium 6000 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	료 학 회		71				0		
BI단능합금 7 7 7 0 0 0 0 0 14 등스탠합금 25 0 53 0 0 0 78 Aluminium 2000/6000 alloys Aluminium 5000 19 44 0 0 0 0 0 5,408 Aluminium 7000 alloys Aluminium 8000 8 0 0 0 0 0 0 5,659 Aluminium 8000 8 0 0 0 0 0 0 0 0 8 Aluminium casting Aluminium casting Aluminium casting Billoys	데이터		0				0		6
티타농합금 7 7 0 0 0 0 0 14 당스텐함금 25 0 53 0 0 0 0 78 Aluminium 2000/6000 alloys Aluminium 5000 19 44 0 0 0 0 0 5,408 Aluminium 7000 alloys Aluminium 8000 8 0 0 0 0 0 0 5,659 Aluminium casting alloys Aluminium 2000 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	집		0						
Aluminium 2000/6000 alloys 2968 2431 9 0 0 0 5,408									14
2000/6000 alloys			25	0	53	0	0	0	78
2000/6000 alloys		Aluminium	2968	2431	0	0	0	0	5,408
Seryllium alloys 19 44 0 0 0 0 0 63 63 64 0 0 0 0 0 0 63 63 64 0 0 0 0 0 0 0 0 0		2000/6000 alloys			9				
alloys Aluminium 7000 alloys Aluminium 8000 alloys Aluminium 8000 alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys Aluminium casting alloys 5 Aluminium casting alloys 5 Aluminium casting alloys 6 0 0 0 0 0 0 0 0 0 2,553 9 Aluminium casting alloys 5 Stainless steels 409 211 168 0 0 0 0 788 Titanium 1085 927 0 0 0 0 0 0 2,012 Nickel base super alloys 7 Aluminium 7000 8 Aluminium 8000 8 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Aluminium 5000		44	0	0	0	0	63
alloys Aluminium 8000 alloys Aluminium casting alloys Aluminium casting alloys 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		alloys	19						
Alloys Aluminium 8000 8			0.410	2246	0	0	0	0	E 650
지		alloys	3413						5,659
지 공 Aluminium casting alloys Aluminium casting alloys		Aluminium 8000	0	0	0	0	0	0	8
지 경 Aluminium casting alloys		allovs	8						
교 alloys 고 권 Alloy steels 1302 449 393 409 0 0 2,553 열 진 전 데 이 터 베이스 베이스 제ion alloys Zinc alloys Zinc alloys Beryllium/ Beryllium alloys Copper/Copper alloys 19 24 0 0 0 0 0 0 43									
군 균 Alloy steels 1302 449 393 409 0 0 2,553 열 진 전 데이터 베이스 Nickel base super alloys 291 17 0 0 0 0 2,012 Beryllium/ Beryllium alloys Copper/Copper alloys 19 24 0 0 0 0 0 0 0 43	미 공	allovs	6	0	0	0	0	0	6
열진전데이터 Titanium 1085 927 0 0 0 0 2,012 Nickel base super alloys 2 0 0 0 0 0 347 Beryllium/ Beryllium alloys 2 42 0 0 0 0 0 64 alloys 19 24 0 0 0 0 0 0 43	군 균	•	1302	449	393	409	0	0	2.553
데이터 Nickel base super alloys 291 17 0 0 0 0 347 39 347 39 39 39 39 39 39 39 39 39 39 39 39 39	여지저	Stainless steels							788
Nickel base super alloys 291 17 0 0 0 347 347 39 291 17 0 0 0 347 347 347 347 347 347 347 347 347 347		Titanium	1085	927		0	0	0	2,012
Alloys Zinc		Nickel base super				_	_	_	
Zinc alloys 2 0 0 0 0 0 2 Beryllium/ Beryllium alloys 22 42 0 0 0 0 64 Copper/Copper alloys 19 24 0 0 0 0 0 43	베이스	allovs	39	291	1/	0	0	0	34/
Beryllium/ 22 42 0 0 0 64			2	0	0	0	0	0	2
Beryllium alloys				-					64
Copper/Copper alloys 19 24 0 0 0 0 43									
alloys 19 24 0 0 0 0 43			19	24	0	0	0	0	
									43
		Bronze	3	2	0	0	0	0	5
									32
<u> </u>									3
				_					18,767

2. 파괴인성치 데이터베이스의 구성

2.1 데이터베이스의 구성

재료의 파괴인성 데이터베이스를 구축할 때 저장된 파괴인성 데이터의 유용성을 향상시키기 위해서는 파괴인성치 데이터와 함께 어떠한 정보들이 함께 저장되어야 하는 가를 고려하여야 한다. 본 연구에서는 일본재료학회가 발간한 파괴인성치 데이터 북에 있는 파괴인성치 데이터 기록방법과 미 공군 균열진전 데이터베이스의 파괴인성 치 데이터 저장방법을 참고하여 관련된 정보를 Fig. 1 과 같이 10개의 테이블로 구분하였으며, 각 테이블은 그림과 같이 데이터베이스 모델중의 하나인 관계형 데이터베이스 형태로 연결하였다. 데이터베이스 시스템은 마이크로소프트사의 Visual FoxPro 6.0을 사용하였다.

2.2 저장된 데이터의 내용

현재 파괴인성 데이터베이스에 저장된 데이터 는 일본재료학회 파괴인성치 데이터 북[1] 및 미 공군 균열진전 데이터베이스[2]에서 수집된 데이 터이다. 저장된 데이터의 수를 재료종류 및 파괴

Fig. 1 Relational schema of fracture toughness database

인성치 종류에 따라 구분하여 Table 1에 표시하였다.

2.3 각종 파괴인성치의 개요

2.3.1 K_{IC} 및 K_C

선형탄성체의 균열선단의 특이 응력장은 응력 강도계수 K에 의해서 표현된다. 실제의 구조재료 에 있어서는 균열선단 근접부근에서는 소성변형 이나 미시적 파손이 발생하지만, 그 영역이 부재 의 치수나 균열길이에 비하여 충분히 작은 경우, 즉 소규모 항복조건을 만족할 경우에는 그 영역 이외의 탄성 응력장은 응력강도계수 K에 의해서 표현될 수 있다. 따라서 소규모 항복조건을 만족 하는 구조재료의 파괴인성치는 K의 한계치에 의 해서 표시된다. K가 한계치에 이르렀을 때 파손 이 발생한다는 조건은 균열의 응력, 변형률 상태 가 한계상태에 도달하면 파손이 발생한다는 것을 의미하고 있지만 이 조건은 에너지의 균형을 고 려한 Griffth의 이론과도 같은 조건을 주고 있다. 소규모 항복조건을 만족하는 경우라도 부재의 치 수나 균열길이가 바뀌면 K의 한계치는 변화하여, 재료고유의 물성치가 될 수 없다. 이러한 경우는 균열선단의 변형양식이 평면응력과 평면 변형률 이 혼재하는 경우에 발생한다. 부재의 치수가 균 열길이에 비하여 충분히 큰 경우에는 평면 변형 률상태가 지배적으로 되고, K의 한계치는 치수 의존성이 없는 재료고유의 물성치를 나타내게 된다. 이러한 경우에 K의 한계치를 평면변형률 파괴인성치라 부르며, K_{IC}로 표시한다. 평면 변형률조건은 시험규격으로 주어지고 다음과 같다.

$$a, b, B \ge 2.5 (K_{IC}/\sigma_{Y})^{2}$$

여기서 a, b, B, σ_Y 는 각각 균열길이, 리가먼 트 길이(시험편 폭에서 균열길이를 빼낸 길이), 시험편의 두께 및 항복응력이다.

이 조건을 만족하지 못하는 K의 한계치는 K_C 로 표시되며, 치수 의존성을 갖는다.

$2.3.2 J_{IC}$

고 연성, 고 인성 재료의 경우 항복강도에 대한 인성치의 비가 크게 되고, 소규모 항복조건을 만족시키기가 사실상 곤란하다. 따라서 대규모 항복상태에 적용 가능한 탄소성 파괴역학을 다룰필요가 있다. 탄소성 상태에서 균열선단의 응력, 변형률 상태는 이른바 HRR 특이성을 나타내며, 이 경우 J적분이 균열선단 부근의 역학적 크기를 대표하는 파라미터로 널리 사용되고 있다.

J적분은 균열선단을 둘러싼 다음의 선 적분으로 정의 된다.

$$J = \int_{\varGamma} \left[W \, dy - T_i (\partial u_i / \partial x) \, ds \right]$$

여기서 $W=\int \sigma_{ij}d\epsilon_{ij}$ 로 정의되는 변형률에너

지의 밀도이다. Γ 는 균열 밑면으로부터 출발해서, 선단을 둘러 싼 윗면에 이르는 임의의 적분경로이다. 또 T_i 는 경로 Γ 에 따른 법선 벡터 n_j 를 사용해서 $T_i = \sigma_{ij} n_j$ 에 의해 정의되는 표면힘 벡터이다. 그리고 u_i 는 Γ 의 변위벡터성분, ds는 Γ 의 미소길이를 나타낸다.

J적분은 다음의 성질을 가지고 있다.

- (가) 적분값은 적분경로에 의존하지 않는다.
- (나) 적분은 균열길이 변화에 따른 포텐샬 에너 지 해방율과 같다.
- (다) J적분은 선형(소규모항복)인 경우, 탄성 포텐셜 에너지 해방율 G와 같다. 또한 Mode I 균열인 경우 $J=(1-\nu^2)K_I^2/E$ (평면 변형률), $J=K_I^2/E$ (평면 응력)의 관계가 있다.

대규모 항복조건에서 구조재료의 파괴인성치, 즉 탄소성파괴인성치는 J적분의 한계치 J_{IC} 로 나타낸다. 탄소성상태에서의 파괴는 균열선단에서의 안정 균열진전을 동반하는 경우가 많으므로이 경우 파괴인성은 안전균열진전 시작에 의해서정의된다. 안전균열진전 개시를 검출하는 방법에는 복수 시편 또는 한 개의 시편으로부터 구한 R 곡선을 이용하는 방법, 또는 전위차, 초음파, AE를 이용하는 방법이 있다. 이러한 방법으로부터구하여진 J값도 시험편치수에 대한 의존성이 있다. K_{IC} 경우와 같이 평면 변형률 상태가 되면 시험편 치수에 대한 의존성이 없는 재료고유의물성치 J_{IC} 가 얻어진다.

이때의 평면 변형률 조건은 다음 식으로 주어 지다

 $a, b, B \ge 25 \left(J_{in} / \sigma_{fs} \right)$

여기서, a, b, B는 각각 균열길이, 리가먼트 길이, 시험편 두께이고, σ_{fs} 는 유효항복강도(flow stress)로 항복강도와 인장강도의 평균치이다.

2.3.3 CTOD

균열이 있는 부재에 하중을 가하면 균열이 열 린다. 이 균열열림변위를 COD(Crack Opening Displacement)라고 부르며, 균열의 임의의 위치에 서 COD를 정의할 수 있다. 구조재료의 균열선단 에서는 소성둔화가 발생하고, 소성둔화에 의한 균열선단의 균열열림변위를 CTOD(Crack Tip Opening Displacement)라 한다. 즉 CTOD는 균열 선단부의 변형상태를 대표하는 파라미터이다.

CTOD의 한계치에 의해서 파괴인성치를 정의할 수 있다. 재료의 파괴형식은 다양하고 그에따라서 CTOD의 한계치도 다양한 물리적 의미를 갖는다. 주로 벽개파괴(Cleavage)에서 나타나는 양상으로 안전균열진전이 0.2mm 보다 작은 불안정파손의 경우의 한계치는 δ_c , 안전균열진이 0.2mm보다 큰 경우의 한계치는 δ_u , 연성 안전균열이 진전을 시작할 때의 한계치는 δ_i , 최대하중을 지나도 안전균열진전이 계속되는 경우는 최대하중점에서의 열림변위를 δ_m 로 표시한다. δ_m 은 시험편치수에 크게 의존하기 때문에 파괴인성치로 보기보다는 단지 참고데이터로 보아야 한다. 평면변형률 조건하에서는 δ_i 와 J_{IC} 사이에는 모델에따라서 계수 λ 의 값은 다르지만 다음의 관계가

성립된다.

 $\delta_i = J_{IC}/\lambda \sigma_f$

여기서 λ 는 평면 변형률 상태에서는 2에 가까 2 값을 가진다.

특히 평면 변형률상태 하에서의 δ_c 또는 δ_u 를 δ_{IC} 라 한다.

2.3.4 K_{Id} 및 K_a

균열이 있는 부재가 충격하중을 받을 경우 하중이 0에서 최대값에 도달할 때까지의 시간이 부재의 고유진동주기와 같거나 그 이하인 경우에는 부재가 가진 관성력의 효과에 의해서 정적인 경우와는 다른 응력이 발생한다. 이와 같은 동적인 하중을 받을 경우에도 선형탄성체를 가정하면, 균열선단 부근의 응력 및 변위의 분포형상은 정적인 경우와 동일하고, 특이 응력장은 $\frac{1}{\sqrt{r}}$ 의 특

이성을 나타낸다. 즉, 정적인 경우의 응력강도계수 K의 경우와 같은 모양으로 K(t)에 의해 균열선단부근의 응력상태를 정의할 수 있으며, K(t)는 동적응력강도대계수라 한다.

동적하중을 받는 경우의 파괴시작은 동적응력 강도계수 K(t)가 한계치에 도달하였을 때 발생하고, 이것을 동적파괴인성 K_d 라 한다. 정적인 파괴인성치 K_c 와 같이 K_d 는 두께의 영향을 받아서, 두께가 증가하면 감소하고, 재료고유의 물성치 K_{Id} 에 점점 가까워진다. 이 경우 판 두께조건의계산에는 동적하중 하에서의 항복응력을 사용하므로, 일반적으로 K_{IC} 에 비하여 작은 판 두께가된다.

균열이 고속으로 진전하는 경우에는, 균열전파속도가 파라미터로 더해져서 K(t, v)에 의해서 균열선단의 역학상태가 정해지고, 이것에 의해서균열진전거동이 지배된다. 평면 변형률의 경우고속 균열진전거동 지배조건 식은 $K_I(t,V)=K_{ID}$ 로 주어지고, K_{ID} 는 동적전파 파괴인성(dynamic propagating fracture toughness)이라고 한다. 고속전파균열이 정지하는가, 안하는가는 구조물의 취성파괴를 방지하는 관점에서 실용상 매우 중요하다. 균열의 정지는 $K_I(t, v)$ 가 K_{ID} 의 최소치 K_{IA} 보다 작을 경우 발생한다. K_{IA} 는 균열이 짧은 경우를 제외하고는 정지시의 하중, 균열길이 등으로부터 구한 K_{Ia} 와 거의 같다. 따라서 일반적으로

K_{la}가 균열전파방지 파괴인성으로 사용된다.



Fig. 2 Search condition of database system

2.4 데이터베이스 검색

재료기호, 인장 물성 데이터, 파괴인성 시험조건 및 파괴인성 종류 등을 검색조건으로 하여 구축된 파괴인성 데이터베이스에서 데이터를 검색할 수 있다. Fig. 2는 재료명 Ni-Cr-Mo-V, 시험편

ı	Ut I	elong	Ra	Direction	Spec_type	Thickness	toug_type	Temper_f	Ttough_val	
•	794.	17.3	58.2	C-R		50.8	KIc	-100.	56.7	
ı								-10.	160.2	
ı								-75.	58.3	
I								-50.	93.0	
ı								-30.	116.2	
İ	794.	17.3	58.2	C-R		25.4	KIc	+7.	166.7	
I								+40.	183.5	
ı								+100.	178.2	
ı	769.	18.2	64.3	C-R		25.4	KIc	+7.	175.7	
I								+40.	182.2	
ı								+100.	175.7	
ı	769.	18.2	64.3	C-R		50.8	KIc	-100.	59.5	
								-10.	155.0	
İ								200	22 5	_

Fig. 3 Search results

방향 C-R, 파괴인성치 종류 K_{IC} 인 데이터를 검색하는 화면을 표시한 것이며, 검색된 파괴 인성치는 Fig. 3과 같이 표시된다.

3. 파괴인성치 데이터베이스의 응용

3.1 신경회로망 교육

신경회로망을 이용하여 인장시험 물성치로부터 평면변형률 파괴인성치 K_{IC}를 예측하기위해서, 인 장강도, 항복강도, 연신율, 파괴인성 시험온도, 파 괴인성 시험편 방향 등 5개의 노드를 가지는 입 력층과 K_{IC} 값 1개를 출력층 노드하며 45개의 노 드 되어있는 1개의 은닉층을 가지는 역전파 신 경회로망 모델을 구성하였다. 이 신경회로망을 교육시키기 위해서 구축된 데이터베이스로부터 인장강도, 항복강도, 연신율, 파괴인성 시험온도, 파괴인성 시험편 방향에 대한 정보를 모두 가지 고 있는 강 재료 595개를 검색하였으며, 그 결과 는 Table 2에 표시하였다. 595개의 데이터 중에서 교육용 데이터로 417개를 사용하였으며, 178개는 테스트용 데이터로 사용하였다. 신경회로망 프로 그램은 상용프로그램인 NeuroShell 2[3]를 사용하 였다. 교육조건은 테스트 데이터의 RMS(Root Mean Square)가 최소가 되는 점에서 네트워크의 가중치 정보를 저장하도록 설정하였다.

3.2 K_{IC} 예측 및 분석

교육된 신경회로망을 이용하여 재료명 A387GR. Cl.22L.1, 인장강도 497 MPa, 항복응력 225 MPa, 연신율 31.8% 인 재료에 대하여 온도 변화에 따른 K_{IC}값을 예측하여, 실험데이터와 비 교한 결과가 Fig. 4에 표시되었다. 예측된 결과는 실험결과와 잘 일치하고 있으며, 실험데이터는 데이터의 흩어짐이 커서 온도변화에 따른 K_{IC}값 의 변화를 명확히 나타내고지 있지 못하는 반면 예측결과는 온도변화에 따른 K_{IC}값의 변화를 잘 나타내고 있다. Fig. 5는 신경회로망을 이용하여 시험편 방향이 및 온도변화가 K_{IC}에 미치는 영향 을 조사한 결과이다. 일반적으로 T-L방향의 K_{IC} 값이 L-T방향의 K_{IC} 값보다 작다는 것은 잘 알려 져 있으며, 신경회로망에 의한 예측결과도 이러 한 사실을 잘 나타내고 있다. 또한 온도가 낮아 질수록 시험편 방향의 영향은 크게 줄어들고 있 으며, 온도가 200⁰C를 넘어가도 시험편 방향의 영향이 감소하는 것을 알 수 있다.

Material name	Yield stress	Ultimate strength (MPa)	Elongation (%)	Temperature (°C)	Crack plane orientation	K_{IC} ($MPa\sqrt{m}$)	The number of data sets	
	(MPa)						Training	Testing
1/2Mo	302~343	480~527	27.5~31.1	-120~160	T-L	37~243	35	17
1/4Cr-1Mo	402~469	588~623	28.7~32.0	-196~300	L-R, T-L, L-S, C-R	30~223	44	13
12Cr	680	821	16.8	-200~500	C-R	33.8~164	19	9
1x1/4Cr-1/2Mo	465~557	636~655	21.3~22.9	-100~100	T-L	49.7~249.2	2	6
A508C1.1	348	528	28	-196~100	C-R	34.4~237.8	7	1
A508C1.2	444~642	615~621	26.7~28.3	-195~150	C-R, L-T	34~239	6	4
A508C1.3	441~448	591~615	24.6~26.7	-200~150	C-R, R-C	38~227	24	6
A533GR.BCL.1	447~460	488~602	27.6~30.1	-200~24	T-L, L-T	37.2~219.5	24	12
Cr-Mo-V	608~650	774~807	7.1~18	-194~427	C-R	18~413.1	70	28
Ni-Cr-Mo-V	617~1013	769~1089	16~23.3	-200~320	C-R	31~202	77	27
Ni-Mo-V	549~657	686~784	20~25	-195~149	C-R	20.8~175	79	37
A387GR.22CL.1	225	497	31.8	-138~94	Unknown	46~251	10	5
A387GR.22CL.2	477	615	24.1	-200~222	Unknown	35~254	14	10
A542CL.1	624	739	20.7	-194~31	Unknown	49~247	6	3
						Sum	417	178

Table 2 K_{IC} data used for training and testing the ANN model

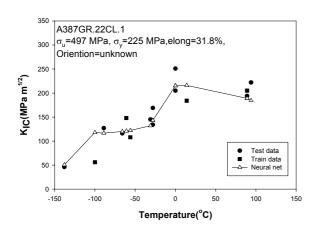


Fig. 4 Comparison of the predicted results and the experimental data for K_{IC}

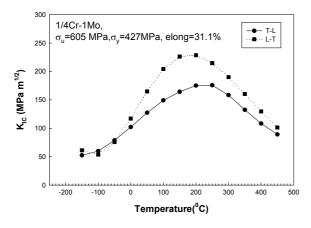


Fig. 5 The prediction of $K_{\rm IC}$ according to temperature and crack plane orientation

4. 결 론

구조물, 기계류의 안전성, 신뢰성 확보를 위한 파괴의 관리, 또는 파손사고해석에 있어서 파괴 인성에 관한 정보가 틀림이 없어야 하고, 중요한 판단에는 반드시 각각의 인성시험을 수행하여야 하지만, 초기설계 단계에서 재료선정, 설계하중 및 부재치수에 관한 검토, 손상허용설계에서 허용균열길이 설정 등에 본 데이터베이스가 유용한 정보를 줄 수 있다고 생각된다. 또한 본 연구에서는 구축된 데이터베이스를 신경회로망 교육에 이용하여 인장시험 물성치로부터 평면변형률 파괴인성치 K_{IC} 를 예측하는 방법을 제안하여 좋은 예측결과를 얻었으며, 온도변화 및 시험편 방향이 K_{IC} 값에 미치는 영향을 조사하였다.

후 기

본 연구는 21세기 프론티어사업인 "스마트무인기 기술개발 사업"의 일확으로 수행된 결과이다.

참고문헌

- (1) JSMS Fracture Mechanics Committee, 1995, Fracture Toughness Handbook.
- (2) USAF, 1999, Crack Growth Database User Manual, Ver.3.1.
- (3) Ward System Groups, 1996, NeuroShell2 User Manual.