• Title/Summary/Keyword: data validation

Search Result 3,346, Processing Time 0.034 seconds

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data (RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.167-178
    • /
    • 2020
  • KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.

T1 Map-Based Radiomics for Prediction of Left Ventricular Reverse Remodeling in Patients With Nonischemic Dilated Cardiomyopathy

  • Suyon Chang;Kyunghwa Han;Yonghan Kwon;Lina Kim;Seunghyun Hwang;Hwiyoung Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.395-405
    • /
    • 2023
  • Objective: This study aimed to develop and validate models using radiomics features on a native T1 map from cardiac magnetic resonance (CMR) to predict left ventricular reverse remodeling (LVRR) in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods: Data from 274 patients with NIDCM who underwent CMR imaging with T1 mapping at Severance Hospital between April 2012 and December 2018 were retrospectively reviewed. Radiomic features were extracted from the native T1 maps. LVRR was determined using echocardiography performed ≥ 180 days after the CMR. The radiomics score was generated using the least absolute shrinkage and selection operator logistic regression models. Clinical, clinical + late gadolinium enhancement (LGE), clinical + radiomics, and clinical + LGE + radiomics models were built using a logistic regression method to predict LVRR. For internal validation of the result, bootstrap validation with 1000 resampling iterations was performed, and the optimism-corrected area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) was computed. Model performance was compared using AUC with the DeLong test and bootstrap. Results: Among 274 patients, 123 (44.9%) were classified as LVRR-positive and 151 (55.1%) as LVRR-negative. The optimism-corrected AUC of the radiomics model in internal validation with bootstrapping was 0.753 (95% CI, 0.698-0.813). The clinical + radiomics model revealed a higher optimism-corrected AUC than that of the clinical + LGE model (0.794 vs. 0.716; difference, 0.078 [99% CI, 0.003-0.151]). The clinical + LGE + radiomics model significantly improved the prediction of LVRR compared with the clinical + LGE model (optimism-corrected AUC of 0.811 vs. 0.716; difference, 0.095 [99% CI, 0.022-0.139]). Conclusion: The radiomic characteristics extracted from a non-enhanced T1 map may improve the prediction of LVRR and offer added value over traditional LGE in patients with NIDCM. Additional external validation research is required.

Analysis of Feature Variables for Breast Cancer Diagnosis

  • Jung, Yong Gyu;Kim, Jang Il;Sihn, Sung Chul;Heo, Jun
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.36-39
    • /
    • 2013
  • It is becoming more important as the growing of health information and increasing in cancer patients diagnose over the time gradually. Among the various types of cancer, we focuses on breast cancer diagnosis. The accuracy of breast cancer diagnosis is increasing when the diagnosis is based on evidence and statistics. To do this we use the weka data mining tools and analysis algorithms significantly associated with the decision tree uses rules. In addition, the data pre-processing and cross-validation are used to increase the reliability of the results. The number and cause of the disease becomes important to increase evidence-based medical doctors. As the evidence-based medical, the data obtained from patients in the past through the disease by calculating the probability for future patients to diagnose and predict disease and treatment plan. It can be found by improving the survival rate plays an important role.

Semiparametric Kernel Poisson Regression for Longitudinal Count Data

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.1003-1011
    • /
    • 2008
  • Mixed-effect Poisson regression models are widely used for analysis of correlated count data such as those found in longitudinal studies. In this paper, we consider kernel extensions with semiparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

APPLICATION OF LOGISTIC REGRESSION MODEL AND ITS VALIDATION FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AND REMOTE SENSING DATA AT PENANG, MALAYSIA

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.310-313
    • /
    • 2004
  • The aim of this study is to evaluate the hazard of landslides at Penang, Malaysia, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from TM satellite images; and the vegetation index value from SPOT satellite images. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by logistic regression model. The results of the analysis were verified using the landslide location data and compared with probabilistic model. The validation results showed that the logistic regression model is better prediction accuracy than probabilistic model.

  • PDF

Variable selection in L1 penalized censored regression

  • Hwang, Chang-Ha;Kim, Mal-Suk;Shi, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.951-959
    • /
    • 2011
  • The proposed method is based on a penalized censored regression model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log likelihood function of censored regression model. It provide the efficient computation of regression parameters including variable selection and leads to the generalized cross validation function for the model selection. Numerical results are then presented to indicate the performance of the proposed method.

Assessment of a Phase Doppler Anemometry Technique in Dense Droplet Laden Jet

  • Koo, Ja-Ye;Kim, Jong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1083-1094
    • /
    • 2003
  • This study represents an assessment of the phase-Doppler technique to the measurements of dense droplet laden jet. High-pressure injection fuel sprays have been investigated to evaluate the use of the Phase-Doppler anemometry (PDA) technique. The critical issue is the stability of the phase-Doppler anemometry technique for dense droplet laden jet such as Diesel fuel spray in order to insure the results from the drop size and velocity measurements are repeatable, consistent, and physically realistic because the validation rate of experimental data is very low due to the thick optical density. The effect of shift frequency is minor, however, the photomultiplier tube (PMT) voltage setting is very sensitive to the data acquisition and noise in dense droplet laden jet. The optimum PMT voltage and shift frequency should be chosen so that the data such as volume flux and drop diameter do not change rapidly.

Estimation of Sediment Delivery Ratio in Upper Geum River Basin Using Watershed Model (유역모형을 이용한 금강상류 유역의 유사이송율 산정)

  • Kim, Tae Geun;Kim, Min Joo
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.695-703
    • /
    • 2013
  • Soil erosion and sediment delivery ratio(SDR) were estimated by using HSPF model in 3 tributaries of upper stream of Geum river-basin. Meteorological data and other input data were constructed from 2006 to 2011 year by the HSPF model. Flow and suspended solid results were relatively matched with the measurement data through the calibration and validation of the model. Soil erosion was proportional to the amount of rainfall and the area of watershed based on the results of model calibration and validation. SDR in Moojunamdea stream was the highest and one in Cho stream was the lowest. This was effected by the geographical characteristic. SDR was 17.6% Moojunamdea stream, 9.1% Cho stream and 13.2 % Bocheong stream. As the SDR was effected by watershed area and shape factor in this study area.

Restricted support vector quantile regression without crossing

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1319-1325
    • /
    • 2010
  • Quantile regression provides a more complete statistical analysis of the stochastic relationships among random variables. Sometimes quantile functions estimated at different orders can cross each other. We propose a new non-crossing quantile regression method applying support vector median regression to restricted regression quantile, restricted support vector quantile regression. The proposed method provides a satisfying solution to estimating non-crossing quantile functions when multiple quantiles for high dimensional data are needed. We also present the model selection method that employs cross validation techniques for choosing the parameters which aect the performance of the proposed method. One real example and a simulated example are provided to show the usefulness of the proposed method.

Validation on Reliability of Data for Development of Forecasting System of Service Lifetime in Marine Structures (해양구조물 수명예측 시스템 구축을 위한 데이터 신뢰성 검증)

  • Leem, Young-Moon;Yang, Eun-Ik;Hwang, Young-Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • Because the damages of corrosion resulting from the chloride ion are very serious, many research studies have been performed to measure the penetration depth of the chloride ion. However, there is a problem with data selection obtained from collection during experiments. After careful study, it appears that the collected data are not conformed to a normal distribution. The result of this study will play a very important role, as a first step for the development and construction of a forecasting system to help determine a reliable service lifetime of marine structures.