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Abstract

The proposed method is based on a penalized censored regression model with L1-
penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized
log likelihood function of censored regression model. It provide the efficient computa-
tion of regression parameters including variable selection and leads to the generalized
cross validation function for the model selection. Numerical results are then presented
to indicate the performance of the proposed method.

Keywords: Censored regression model, generalized cross validation function, iteratively
reweighted least squares procedure, L1-penalty, variable selection.

1. Introduction

The censored regression model and the least squares method to accommodate the cen-
sored data seem appealing since they are familiar and well understood. Koul et al. (1981)
gave a simple least squares type estimation procedure in the censored regression model with
the weighted observations and also showed the consistency and asymptotic normality of the
estimator. Zhou (1992) proposed an M-estimator of the regression parameter of censored
regression model based on the weights Koul et al. (1981) proposed. Orbe et al. (2003) pro-
posed the estimation procedure of censored regression model where estimators of regression
parameters and nonlinear function are obtained by minimizing the penalized weighted least
squares objective function through iterative method. They also proposed the procedure to
generate the bootstrap resamples to obtain the uncertainty measures of estimators. Jin et
al. (2003) proposed the estimation procedure where regression parameter estimates of cen-
sored regression model are obtained from non-monotone estimating equations based on the
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weighted log-rank statistics. The estimating equations are solved through iterative method
with Gehan (1965)-type estimate as the initial value. Ghosh and Ghosal (2006) proposed
the estimation procedure based on a nonparametric Bayesian approach which uses a Dirich-
let prior for the mixture of Weibull distribution in the censored regression model. Markov
Chain Monte Carlo method is used to obtain the marginal posterior distribution of regression
parameters.

In this paper we set x; be the covariate vector and t; be the response variables (survival
times) corresponding to covariate vector, x; or transformation on it, where i = 1,2,---  n.
In fact we cannot observe t;’s but the observed variable, y; = min(¢;,¢;) and §; = I(t; < ¢;),
where I(-) denotes the indicator function and ¢; is the censoring variable corresponding to x;
fori=1,2,---,n. ¢;’s are assumed to be independently distributed with unknown survival
distribution functions. Let m(x;) be the regression function of the response variable given
x;. We assume that @;’s and y;’s are centered so that m(x;) is related to the covariate vector
x; in a linear form without a bias as

m(wl):wiﬁv 7’:1727 » 1, (11)

where 3 is a p X 1 regression parameter vector. Generally, all the p covariates may not much
affect the survival times so that some (’s may be zeros in true regression function. Many
variable selection techniques for linear regression models have been extended to the context
of survival models, including the best-subset selection, stepwise selection, and Bootstrap pro-
cedures (Sauerbrei and Schumacher, 1992). Recently the LASSO (least absolute shrinkage
and selection operator; Tibshirani, 1997) has been proposed for Cox proportional hazards
model (Cox, 1972). By shrinking some regression parameters to zero, this method provides
the selection of important variables and the estimation of regression parameters simultane-
ously. Huang et al. (2005) proposed the regularization and variable selection approach using
LASSO (Tibshirani, 1996). Hu and Rao (2010) proposed a weighted least squares method
with censoring constraints and sparse penalization to fit censored regression models with
high-dimensional covariates.

We consider the penalized censored regression with L1 norm which is known to have the
sparsity on estimation of regression parameters (Williams, 1995). We use the iteratively
reweighted least squares (IRWLS) procedure to solve the penalized log likelihood function
with L1 norm of censored regression. It provide the efficient computation including variable
selection and provides the generalized cross validation function for the model selection.

The rest of paper is organized as follows. In Section 2 we briefly review the censored
regression. In Section 3 we propose IRWLS procedure to penalized estimation for censored
regression with L1 norm. In Section 4 we perform the numerical studies with simulated data
sets and a real data set. In Section 5 we give the conclusions.

2. Censored regression

In most practical cases survival distribution function of ¢;’s, G, is not known and needs to
be estimated by the Kaplan-Meier (1958) estimator or its variation. The problem considered
here is that of the estimation of m(x;) based on (01,y1,21), -+, (On,Yn,Tn). Buckley and
James (1979) defined the pseudo-response variable
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They showed E(y}|x;) = E(t;|x;) and proposed the iteration method to estimate the re-
gression parameters 8. Koul et al. (1981) defined new observable responses y; as y; = w;y;
with

d;
G(y:)
and showed y; has the same mean as ¢; and thus follows the same linear model as t; does.

Here, é, the Kaplan-Meier estimates (Kaplan and Meier, 1958) of survival distribution
function G of ¢;’s can be obtained as,

w; =

(2.2)

.\ 1)
n—1i .
G(y) = { i<y <n it 1) 1Y <y (2:3)

0, otherwise

where (y(;),0(;)) is (s,0;) ordered on y; for i = 1,--- ,n. Koul et al. (1981) proposed the
ordinary least squares regression of yf on ;. Zhou (1992) proposed the weighted least
squares regression of ¥ on x; with w; as follows:

B=(x'Wa) /Wy, (2.4)

where x is a n x p matrix and W is a diagonal matrix of w;’s. 3 in (2.4) can be seen as the
minimizer of the objective function as follows:

1 n
izwz(yz *-’1325)2- (2:5)
i=1

3. L1 penalized censored regression

From (2.5) we assume that r; = \/w;(y; — m(x;)) follows a probability distribution such
that p(r;) o exp(—0.5r?). Then the negative log-likelihood of the given data set can be
expressed as (constant terms are omitted),

l(mlx) = Zwl yi —m(x;))> (3.1)

The regression function is estimated by a linear model, m(x;) = «,3. Then the maximum
likelihood estimates of 3 are obtained by minimizing the negative log-likelihood function,

(Bl = sz yi — zB8)%. (3.2)

The maximum likelihood estimates of 3 generally lead severe overfitting, we are encouraged
to use a prior over 3. Then the penalized maximum likelihood estimates (the maximum a
posteriori estimates) of 3 are obtained by minimizing the objective function,

L(B) = £(B) + logp(B), (3.3)
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where p(8) is some prior over 3.
To have the sparsity on estimation of 3, we use a Laplacian prior (Williams, 1995),

p(B) o exp(=Al|B|}1), (3.4)
where |81 = >-%_, |8i| denotes L1 norm and A is a positive penalty parameter. The
objective can be rewritten as

Here A controls the tradeoff between the goodness-of-fit on the data and ||3||;. The objective
function L(3) in (3.5) is not differentiable with respect to 3, we need a modification of L([3)
for IRWLS procedure.

We define an objective function given 8* as

A p
ﬁ|/6 sz Yi — i 52:

then L(B|B") > L(B) with equality if and only if 3 = 8* (Krishnapuram et al., 2005) and
L(B|B") is differentiable with respect to 3. At ¢ th iteration of IRWLS procedure, we have

(3.6)

)\ p
) Z
L(BI8 Zm vi — @)’ + 5 Zj (37)
Then ,8(t+1) is obtained by minimizing L(,B|B(t)) with respect to 8 as
B = (@'Wa 4+ AV(BW)) 'z Wy, (3.8)

where V(B(t)) is the diagonal matrix consisted of 1/|B§t) Li=1,---,p.

During iteration, we find that some (3;’s tend to zero keeping the value of objective function
L(B) decreasing. This motivates that we can find sparse estimates of 8 which provides
decreasing value of the objective function L(3) simultaneously. Algorithm of L1 penalized
censored regression using IRWLS Procedure is given as follows:

1. Set v=(1:p) and B(v)® .
2. Find solution B(v)*+t1) which minimizes L(B(v)|8(v)™®).
3. Set @-(H_l) = 0 which is sufficiently close to zero. Find v = {j|6j(t+1) #0}.

4. Tterate 2-3 until |L(B(v)**+D) — L(B(v)®)| < tolerance.

The functional structures of L1 penalized censored regression is characterized by penalty
parameter A. To select the optimal penalty parameter we define the cross validation (CV)
function for the model selection criterion as follows:

sz yi — 7 ()2, (3.9)



Variable selection in L1 penalized censored regression 955

which is similar to the weighted residual sum of squares (Zhou, 1998). Here T?L(_i)(ilii) is
the regression function estimated without ¢ th observation. Since for each candidate of
penalty, ﬁzf\ﬂ) (x;) for i = 1,---  n, should be evaluated, selecting penalty parameter using

CV function is computationally burdensome. GCV function is obtained as follows:
Y wily — ()’

GCV(\) = e : (3.10)

where H = (z(:,v) Wz (:,v) + AV (v,v)) "tz (:,v)’W is the hat matrix such that m,(x) =
Hy with the (¢, ) th element h;; = 0m(x;)/0y;. Details of derivation of GCV function can
be seen in Cho et al. (2010), Hwang and Shim (2010), Shim (2005), Shim and Lee (2009).
Akaike (1974) defined Akaike’s Information Criterion (AIC) for model selection criterion a
follows:

AIC = 21(B|z) + 2K, (3.11)

where K is the number of estimable parameters in the model and {(3|x) is the negative log-
likelihood. Inspired by AIC, we define an AIC-type criterion to incorporatethe simplicity of
the model into the model selection criterion as follows:

GCV (AN arc =log(GCV(N)) + K, (3.12)

where K is the number of variables with non-zero regression parameters.

4. Numerical studies

We illustrate the performance of the proposed method for the estimation and the variable
selection through the simulated data sets and the real data set.

Example 4.1 We generate 100 data sets to compare the performance of variable selection
with the exhaustive search using the weighted least squares regression of Zhou (1992) in (2.4).
For each i = 1,---,100, x;1, - ,x;6 are generated from a uniform distribution, U(0, 1),
respectively and (t, ¢)’s are generated as follows:

ti=14+x;B+e, c;=14+x.B+¢€,, i=1,---,100,

where 8’ = (2,0,2,0,0,0), ¢,’s and ,,’s are generated from normal distributions, N(0,0.1),
respectively. For each data set, the proposed method is applied with the optimal value of
the penalty parameter chosen from GCV function in (3.12). The box plots of each §; ’s by
the proposed method and the weighted least squares regression of Zhou (1992) are shown
as in Figure 4.1 (Left) and Figure 4.1 (Right), respectively. Also we obtained the mean
squared error of (m(x) — m(x)) and its standard deviation in each data set. As results
we obtained the averages of 100 mean squared errors and their standard deviations for the
proposed method as (0.0066, 0.0045) and (0.0106, 0.0059) for the weighted least squares
regression of Zhou (1992), respectively, this implies that the proposed method has better
estimation performance than the weighted least squares regression of Zhou (1992) in this
example. For the exhaustive search using the weighted least squares regression of Zhou
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(1992), we use (6,2)" = 15 sets of two variables shown in the first column heading of Table
4.1. We divided each dataset into 15 sub-data sets according to 15 sets of two variables
such as {y;, 8, wi1, zio} 129, {yi, 00, win, xis} 129, -+, {wi, 8, wis, xie} 129, and obtained 15
sets of (B\“@) and 15 likelihoods 1(3)’s in (3.2) for 15 sub-data sets. We computed the
averages of 100 (B\i, B\j)’s and 100 I(3)’s for each set of two variables to choose two most
important variable, which are shown in the second and the third column headings of Table
4.1. From Figure 4.1 (Left) and Table 4.1 we can see that the proposed method agree with
the exhaustive search using the weighted least squares regression of Zhou (1992) in (2.4) for
the variable selection of (z1, x3) as the most important set of two variables.
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Figure 4.1 Box plots of estimated regression parameters in Example 4.1

Table 4.1 Results of Example 4.1 by exhaustive search (standard deviation in parenthesis)

variables (i, ) averages of (3;, 5;) average of [(3)
2.1324 (0.2411), 0.0035 (0.2649) 20.8209 (2.6232)
2.0203 (0.1093), 2.0311 (0.1093) 4.0321 (0.7009)
2.1219 (0.2433), 0.0181 (0.3058)  20.7286 (2.7369
2.1275 (0.2447), 0.0106 (0.2614) 20.8233 (2.6389
(
(

=
N

NSNS IS TN IS NN

)
)
2.1316 (0.2423), 0.0218 (0.2686)  20.8008 (2.6983)
0.0100 (0.2669), 2.1437 (0.2326)  20.4846 (2.7192)
0.0142 (0.3484), -0.0056 (0.4311)  38.9792 (5.7702)
0.0231 (0.3337), 0.0026 (0.3818)  39.1437 (5.5621)
0.0226 (0.3518), 0.0202 (0.3839)  39.1222 (5.5674)
)
)
)
)
)
)

2.1339 (0.2379), -0.0134 (0.2743)  20.4628 (2.6955
2.1394 (0.2349), 0.0101 (0.2835)  20.4439 (2.6288
2.1396 (0.2382), 0.0039 (0.2740)  20.4625 (2.6787
-0.0116 (0.4307), -0.0020 (0.3889)  38.8444 (5.7454
-0.0163 (0.4331), 0.0211 (0.3821)  38.8551 (5.7454
0.0017 (0.3947), 0.0232 (0.3822)  38.9817 (5.5523

OO UL O UL O Uk WO U W

NN N N N S N S S S S S o
U B W W WNNDNNF ==

Example 4.2 We applied the proposed method to the data set of Diffuse large B-
cell lymphoma (DLBCL) survival times and gene expression published by Rosenwald et al.
(2002). This data set consists of expression values of 7399 genes across 240 patients with
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DLBCL, including 138 patient deaths during the follow-ups with a median death time of
2.8 years. The patients were divided into a training data of 160 patients and a test data of
80 patients as Bair and Tibshirani (2004). The optimal value of the penalty parameter was
chosen as 0.5 from GCV function in (3.12). To evaluate the performance of estimation and
variable selection methods, Li (2006), Hu and Rao (2010) proposed to partition the subjects
into a high risk and a low risk group according to the estimated survival times, choose the
estimated median as the cut-point and then compare the difference between survival times
of two risk groups. If there is a significant difference between two risk groups, the selected
variables are expected to be highly predictive. Figure 4.2 shows Kaplan-Meier estimates
(Kaplan and Meier, 1958) of survival functions for two risk groups of training data (Left)
and test data (Right), where the estimated median used as the cut-point of each risk group
was obtained by the proposed method. Hu and Rao (2010) selected 79 genes, log-rank tests
show highly significant difference between the two groups in survival for training data (X%l)
= 116.12 and p-value < le - 10), and for test data (X%I) = 4.55 and p-value = 0.017). By
the gradient LASSO (Huang et al., 2005) 37 genes were selected and resulted in p-value of
the log-rank test of test data = 0.05 (Li, 2006). By the proposed method 99 genes were
selected, log-rank tests show (X%l) = 32.17 and p-value < le - 9) for training data and (X%l)
= 12.96 and p-value =0.00031) for test data, which show highly significant difference in
survival times between the two risk groups for training data and test data. Thus results of
log-rank tests indicate better predictive performance of the proposed method than the other
methods for test data. Figure 4.3 shows the scatter plots of estimated log-survival times by
the proposed method versus log-observed survival times of each risk group in training data
(Left) and test data (Right), which are superimposed lines of slope 1, where "*’ represents
uncensored data point and ’o’ represents censored data point.

Estimated surviv al functions
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Figure 4.2 Estimated survival functions for two risk groups

5. Conclusions

In this paper, we dealt with estimating the regression function and variable selection based
on a penalized censored regression model with L1-penalty. We use the iteratively reweighted
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least squares procedure to solve L1 penalized log-likelihood function of censored regression
model. It provide the efficient computation and leads to the generalized cross validation
function for the model selection. Through the examples we showed that the proposed method
derives the satisfying solutions. The proposed method is simple and reliable in the point that
estimation of the regression function and variable selection are performed simultaneously.
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Figure 5.1 Scatter plots of estimated log-survival times versus log-observed survival times
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