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Abstract

Quantile regression provides a more complete statistical analysis of the stochastic
relationships among random variables. Sometimes quantile functions estimated at dif-
ferent orders can cross each other. We propose a new non-crossing quantile regression
method applying support vector median regression to restricted regression quantile, re-
stricted support vector quantile regression. The proposed method provides a satisfying
solution to estimating non-crossing quantile functions when multiple quantiles for high
dimensional data are needed. We also present the model selection method that employs
cross validation techniques for choosing the parameters which affect the performance
of the proposed method. One real example and a simulated example are provided to
show the usefulness of the proposed method.

Keywords: Cross validation technique, location-scale model, quantile regression, re-
stricted regression quantile, support vector quantile regression.

1. Introduction

Quantile regression introduced by Koenker and Bassett (1978) provides a more informative
description of relationships among variables. It has been a popular method for estimating
the quantiles of a conditional distribution on the values of covariates. Just as classical linear
regression methods based on minimizing sum of squared residuals enable us to estimate a
wide variety of models for conditional mean functions, quantile regression methods offer a
mechanism for estimating models for the conditional median function, and the full range
of other conditional quantile functions. Cole (1990) introduced a parametric method that
has been termed the LMS method, which is based on three functions of the covariates: the
Box-Cox power transformation (L), the mean or median function (M), and the coefficient
of variation (8S).

Koenker and Bassett (1978) introduced a nonparametric approach which is based on M-
estimation similarly to least absolute deviation methods. This approach yields consistent
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estimates of the quantile regression under general conditions, without requiring that the
form of the distribution of output variable be specified. However, a major drawback is that
a separate specification and estimation are required for each quantile order of interest. With-
out special restriction, quantile functions estimated at different orders can cross each other,
although true quantile functions are defined to be non-crossing. In an effort to modify the
Koenker and Bassett algorithm to ensure that quantile regressions would not cross, He (1997)
proposed the restricted regression quantile (RRQ), which is based on a location-scale model.
It can be employed for a broad class of models including linear heteroscedastic models and
nonlinear quantile regression models. Heagerty and Pepe (1999) proposed a semiparamet-
ric method where they model the location and scale as flexible regression spline functions
and allow the distribution of error to vary as a function of covariates. Their method com-
bines the strengths of both the parametric LMS method and the nonparametric methods of
Koenker and Bassett (1978). In RRQ, He (1997) transformed the non-crossing constraint
into positivity constraint. When conducting such transformation, we should impose some
restrictions on the conditional moment structure of the problem, which is not desirable from
nonparametric modeling view point. Takeuchi (2004) and Takeuchi et al. (2006) described
non-crossing quantile regression method via support vector machine (SVM, Vapnik, 1995)
which utilizes the non-crossing constraint as a simple linear constraint. This SVM approach
shows good performance in prediction. For details of applications of SVM, refer to Hwang
(2007), Hwang (2008), Shim and Seok (2008), Shim et al. (2009). However, non-crossing
quantile regression method via SVM has disadvantage that every adjacent pair of condi-
tional quantile functions should be computed when multiple quantiles are needed. Shim et
al. (2009) proposed non-crossing quantile regression method using doubly penalized ker-
nel machine which employs heteroscedastic location-scale model as basic model and then
estimates both location and scale functions simultaneously by kernel machines.

In this paper, we propose a new non-crossing quantile regression method applying support
vector median regression to RRQ, which is based on a location-scale model and uses a
multi-step strategy. We also develop the model selection method that uses 10-fold cross
validation technique and the generalized approximate cross validation (GACV) function for
choosing the parameters which affect the performance of the proposed method. The rest
of this paper is organized as follows. In Section 2 we propose the proposed method for
non-crossing quantile regression. In Section 3 we present the model selection method using
GACYV function. In Section 4 we perform the numerical studies through two examples. In
Section 5 we give the conclusions.

2. Restricted support vector quantile regression

2.1. Support vector median regression

Let the training data set D be denoted by (z;,y;)™ ;, with each input vector x; € R? and
the output y; € R which is linearly or nonlinearly related to the input vector x;. Here the
feature mapping function ¢(-) : R* — R% maps the input space to the higher dimensional
feature space where the dimension dy is defined in an implicit way. An inner product in
feature space has an equivalent kernel in input space, ¢(x;) ¢(x;) = K(x;, x;) (Mercer,
1909). Several choices of the kernel K (-,-) are possible.

We consider the nonlinear case, in which the median function given x, m(x), can be
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regarded as a nonlinear function of input vector . With an absolute loss function, the
median function can be defined as a function of any solution to the optimization problem,

1 n
miniw’w+02|yi — m(x;)). (2.1)

i=1

We can express the median regression problem by formulation for SVM as follows.
in 2w’ C . 4 2.2
minzww + 2(5¢+5¢) (2.2)

subject to
Yi — w/¢(ml) -b< ¢, w/¢(wl) +b—y; < g;ka 5175: >0,

where C'is a regularization parameter penalizing the training errors. We construct a Lagrange
function as follows:

L= %w/w + C'Z(fi +&) — Zai(fi — (y; —w'¢(x;) — b)) (2.3)

=i - (w'o) +b—y)) — S m - S nig.
i=1 i=1 i=1

We notice that the non-negative constraints o, a},n;,n7 > 0 should be satisfied. After
taking partial derivatives of the equation (2.3) with regard to the primal variables (w, &;, b)
and plugging them into the equation (2.3), we have the optimization problem below.

) 1 n n n
minl = 3 Z oo K(zi, x;) + Zaiyi - Zafyi (2.4)
ij=1 i=1 i=1

subject to Y1 (; —af) =0, ayaf =0,0<a; <Cand 0 < af <C.
Solving the above problem with the constraints determines the optimal Lagrange multi-

pliers &; and @. Thus, the estimated median function given the input vector x, is obtained
as

~

(o) = K(@p,@)(6 — &)+, (2.5)
where b is obtained via Kuhn-Tucker conditions (Kuhn and Tucker, 1951) such as,

~ 1 P

b=—> (v — Ki(@a—a"), (2.6)

n
Siel,

where ng is the size of the set I, ={i=1,--- ,n|-C < a; —a; < C}.
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2.2. Restricted support vector quantile regression

Here we consider a nonlinear heteroscedastic model
yi = m(x;) + s(x;)e; (2.7)

where s(x;) is assumed to be positive, €; is assumed to have a median 0 and |¢;| is assumed
to have a median 1.

For non-crossing quantile regression, we employ the restricted regression quantile (He,
1997) with support vector median regression as follows:

1) Apply support vector median regression on (&;,y;)7—; to obtain the median function
m(x;) of y given x; and residuals 7; = y; — m(x;).

2) Apply the support vector median regression on (x;, |;]|)_; to obtain the estimated
median function of |7;| given x;, §;, which is the estimate of s(x;) since the median of |¢;| is
assumed 1. N

3) Find the 0 th quantile of 7;, 338;, by minimizing Y .- | ho(7; — 35;), where hg is a check
function such that hg(e) = 01(c>0)+ (1 —0)I(ccn). Since r; = y; —m(x;) = s(x;)e;, quantiles
of r; depend on x; through s(x;) whose estimate is §;.

Then the 8 th quantile function of y given «; is obtained as
Qo) = m(x;) + B (2.8)

Here quantiles of 7; are non-crossed since the linear quantile regression is performed, which
leads quantile functions of y given x; non-crossed.

3. Model selection

In the step 1 and 2 of estimation procedure of non-crossing quantile regression, we apply
support vector median regression. The functional structures of support vector median re-
gression is characterized by C' and the kernel parameters. To select the hyper-parameters of
support vector median regression we consider the cross validation (CV) function as follows:

1. R .
CV(A) = EZ ly: — ()Y, (3.1)
=1

where ) is the set of parameters and 7 (z;)(~% is the median function estimated without i
th observation. Since for each candidates of parameters, m(zx;)(~% for i = 1,--- ,n, should
be evaluated, selecting parameters using CV function is computationally formidable. Yuan
(2006) proposed the generalized approximate cross validation (GACV) function as follows,

GACV(A) = Z W

i=1

; (3.2)

where gp(;) is the estimated 6 th quantile function given x; and dy is a measure of the
effective dimensionality of the fitted model. Yuan (2006) used dy = >, dgo(x;)/dy; with
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a differentiable modified check function. Li et al. (2007) showed that d; is equal to the
number of interpolated y;’s, which is, dy is the size of the set {i =1,--- ,n|go(x;) = v;}. In
support vector median regression, m(x;) = y; for i € I, which leads to use the size of set I
in the equation (2.6) as dy in GACV function (3.2) for the model selection. Thus we have
GACYV function as follows;

GACV(A) = zn:

i=1

lyi — ﬁl(wiﬂ. (3.3)

4. Numerical studies

In this section, we illustrate the performance of the proposed method for non-crossing
quantile regression through a well-known motorcycle data set (Table 1 on pp. 302 of Hirdle,
1989) and simulated data sets. We use the Gaussian kernel for the examples, which is,

|1 — 22|
K(x1,x2) = exp (—2 .

g

Example 1. In this example we consider the motorcycle data, which have been widely
used to demonstrate the performance of nonparametric quantile regression methods. The
data were collected performing crash tests with dummies sitting on motorcycles. The head
acceleration (y) of the dummies (in g) was recorded a certain time (measured in milliseconds
(z)) after they had hit a wall. The estimated quantile functions for §=0.1, 0.25, 0.5, 0.75,
0.9 are superimposed on the scatter plot in Figure 4.1. The values of (Cy, Co, 0%, 03) are
chosen as (200, 10, 0.5, 0.5) by the proposed model selection method, where C; and 0% are
the regularization parameter and kernel parameter, respectively, for the step 1 and C5 and
o3 are for the step 2.

As seen from Figure 4.1, as z increases the variance of y increases when x < 33 and de-
creases when x > 33. The conditional quantile functions estimated by the proposed method
do reasonably well even in the region beyond 50 milliseconds where the data is so sparse
that all the quantile functions want to coalesce. As a whole, the proposed method seems to
give a good estimation of non-crossing quantile functions.

The conditional quantile functions estimated by the proposed method do reasonably well
even in the region beyond 50 milliseconds where the data is so sparse that all the quantile
functions want to coalesce. As a whole, the proposed method seems to give a good estimation
of non-crossing quantile functions.

Example 2. For this example we generate 100 data sets of size 150 in a similar manner
to Cawley et al. (2004). The univariate input observations z are drawn from a uniform
distribution on the interval (0, 7), the corresponding responses y are drawn from a univariate
normal distribution with mean and variance that vary smoothly with x

z~U(0,m), y~N(u), V()

where p(z) = sin(3z/2) sin(5z/2) and V() = 1/100 4 (1 — sin(5z/2))* /4.
The values of (Cy,Co,0%,03) are chosen by the proposed model selection method for every
single data set whenever a new data set is generated. As seen from Figure 4.2, five estimated
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Figure 4.1 An illustration of the proposed quantile regression analysis for the motorcycle data.
Estimated quantile functions for 8 =0.1, 0.25, 0.5, 0.75, 0.9 are superimposed on the scatter plot.

quantile functions reflect well the heteroscedastic structure of the error term. They have their
(local) minima and (local) maxima at different = values. For example, the 0.1th, 0.5th and
0.9th quantile functions have maxima at z =0.75, 0.75 and 2.15, respectively, and minima
at 1.75, 0.25 and 0.25, respectively. There are no quantile crossing even in the region where
the data is sparse.For 100 data sets of size 150, we now compare the proposed method with
other quantile function estimation methods - the RRQ method by He (1997) and the SVM
method by Takeuchi (2004). For comparison we calculate the mean and standard deviation
of 100 mean absolute errors (MAEs) for each estimated quantile function as follows:

1 n
MAE = 52 lgo (i) — do(xs)]

i=1
In Table 4.1 standard deviations are given in parenthesis. As seen from Table 4.1, the

proposed method yields the smallest mean of MAEs. We can see that the proposed method
works better than the RRQ and the SVM on simulated data sets.
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Figure 4.2 True quantile functions (Left) and estimated quantile functions estimated by the proposed
method (Right) for one of 100 data sets. The quantile functions for § =0.1, 0.25, 0.5, 0.75, 0.9 are
superimposed on the scatter plot.
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Table 4.1 Comparison of MAEs for the simulated data sets.
0
0.1 0.25 0.5 0.75 0.9
RRQ 0.1632 (0.0344)  0.1523 (0.0382)  0.1827 (0.0546)  0.2521 (0.0751)  0.3604 (0.1031)
SVM 0.1828 (0.0994) 0.1626 (0.0573)  0.1936 (0.0707)  0.3051 (0.0955)  0.4601 (0.1393)
proposed  0.1362 (0.0446)  0.1030 (0.0306)  0.0891 (0.0278)  0.1054 (0.0342)  0.1352 (0.0452)

5. Conclusions

In this paper we have proposed a new non-crossing quantile regression method which uses
support vector median regression and heteroscedastic location-scale model as basic model.
To show the effectiveness of the proposed method we have used a well-known motorcycle data
set and simulated data sets. Through numerical experiment, we found that the proposed
method derives a satisfying solution to estimating non-crossing quantile functions when
multiple quantiles are needed and captures well the characteristics of data. The functional
characteristics are obtained through the selection of free parameters of the proposed method
in case of the Gaussian kernel. These parameters have been tuned using GACV function.
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