• Title/Summary/Keyword: data update

Search Result 1,133, Processing Time 0.031 seconds

Program Development and Field Application for the use of the Integration Map of Underground Spatial Information (지하공간통합지도 활용을 위한 프로그램 개발 및 현장 적용)

  • Kim, Sung Gil;Song, Seok Jin;Cho, Hae Yong;Heo, Hyun Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • Due to the recent increase in various problems from underground development in urbanized areas, accurate underground facility information management is highly needed. Therefore, in this study, in order to utilize the Integration Map of Underground Goespatial Information in real time on-site, the function of comparing the mutual location of the GPR (Ground Penetration Radar) sensing data and the Integration Map of Underground Goespatial Information, and function of analyze underground facilities, and function of converting surveying data into a shape file through position correction & attribute editing in a 3D space, and the function of submitting the shape file to the Integration Map of Underground Goespatial Information mobile center was defined and developed as a program. In addition, for the on-site application test of the development program, scenarios used at the underground facility real-time survey site and GPR exploration site were derived, and four sites in Seoul were tested to confirm that the use scenario worked properly. Through this, the on-site utilization of the program developed in this study could be confirmed, and it would contribute to the confirmation of the quality of Shape-file and the "update automation" of "Integration Map of Underground Goespatial Information". In addition, it is expected that the development program will be further applied to the Underground Facility Map's Accuracy Improvement Diffusion Project' promoted by the MOLIT (Ministry of Land, Infrastructure, and Transport).

Design of Standard Submission Format for Underground Structures : An Automated Update of the UnderSpace Integrated Map (지하공간통합지도 자동갱신을 위한 지하구조물 제출 표준 설계)

  • Park, Dong Hyun;Jang, Yong Gu;Ryu, Ji Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.469-476
    • /
    • 2021
  • The framework plan for the development of an integrated underground space map was established of preventing ground subsidence. The mapping process is expected to be completed to the level of nationwide municipal government standards by end of this year. To facilitate the utilization of the integrated underground space map, paper-based drawings for specialized organizations in underground safety impact assessment have been provided since September 2018, and services for local government officials have been provided in the underground information utilization system since May 2019. However, the map is utilized based on the information at the time of the initial development of the map, without any updates, thereby resulting in a lack of accuracy and latest information. This has led to a decrease in the utilization and reliability of the information. Therefore, in this study, for the underground structures(subway, underground shopping mall, underground passage, underground roadway, underground parking lot, utility tunnel), which are the key components of the integrated underground space map, a standard format for the submission of completed drawings is designed in accordance with Article 42 (2) of the Special Act on Underground Safety Management, which aims at laying the foundation for establishing the updated system of the integrated underground space map. In addition, through the verification of the automatically updated underground structure data based on the standard format, the reliability of the data can be assured. This format is expected to contribute to the improved utilization of the integrated underground space map in the future.

The study of security management for application of blockchain technology in the Internet of Things environment (Focusing on security cases in autonomous vehicles including driving environment sensing data and occupant data) (사물인터넷 환경에서 블록체인 기술을 이용한 보안 관리에 관한 소고(주행 환경 센싱 데이터 및 탑승자 데이터를 포함한 자율주행차량에서의 보안 사례를 중심으로))

  • Jang Mook KANG
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.161-168
    • /
    • 2022
  • After the corona virus, as non-face-to-face services are activated, domain services that guarantee integrity by embedding sensing information of the Internet of Things (IoT) with block chain technology are expanding. For example, in areas such as safety and security using CCTV, a process is required to safely update firmware in real time and to confirm that there is no malicious intrusion. In the existing safe security processing procedures, in many cases, the person in charge performing official duties carried a USB device and directly updated the firmware. However, when private blockchain technology such as Hyperledger is used, the convenience and work efficiency of the Internet of Things environment can be expected to increase. This article describes scenarios in how to prevent vulnerabilities in the operating environment of various customers such as firmware updates and device changes in a non-face-to-face environment. In particular, we introduced the optimal blockchain technique for the Internet of Things (IoT), which is easily exposed to malicious security risks such as hacking and information leakage. In this article, we tried to present the necessity and implications of security management that guarantees integrity through operation applying block chain technology in the increasingly expanding Internet of Things environment. If this is used, it is expected to gain insight into how to apply the blockchain technique to guidelines for strengthening the security of the IoT environment in the future.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Design of a Crowd-Sourced Fingerprint Mapping and Localization System (군중-제공 신호지도 작성 및 위치 추적 시스템의 설계)

  • Choi, Eun-Mi;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi fingerprinting is well known as an effective localization technique used for indoor environments. However, this technique requires a large amount of pre-built fingerprint maps over the entire space. Moreover, due to environmental changes, these maps have to be newly built or updated periodically by experts. As a way to avoid this problem, crowd-sourced fingerprint mapping attracts many interests from researchers. This approach supports many volunteer users to share their WiFi fingerprints collected at a specific environment. Therefore, crowd-sourced fingerprinting can automatically update fingerprint maps up-to-date. In most previous systems, however, individual users were asked to enter their positions manually to build their local fingerprint maps. Moreover, the systems do not have any principled mechanism to keep fingerprint maps clean by detecting and filtering out erroneous fingerprints collected from multiple users. In this paper, we present the design of a crowd-sourced fingerprint mapping and localization(CMAL) system. The proposed system can not only automatically build and/or update WiFi fingerprint maps from fingerprint collections provided by multiple smartphone users, but also simultaneously track their positions using the up-to-date maps. The CMAL system consists of multiple clients to work on individual smartphones to collect fingerprints and a central server to maintain a database of fingerprint maps. Each client contains a particle filter-based WiFi SLAM engine, tracking the smartphone user's position and building each local fingerprint map. The server of our system adopts a Gaussian interpolation-based error filtering algorithm to maintain the integrity of fingerprint maps. Through various experiments, we show the high performance of our system.

Analysis of Hepatobiliary Disorders from a Nationwide Survey of Discharge Data in Korean Children and Adolescents (전국 퇴원자료조사를 통한 소아청소년 간담도 질환의 분석)

  • Park, Hyun-Ju;Shin, Chang-Gyun;Moon, Jin-Soo;Lee, Chong-Guk
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • Purpose: To update the epidemiologic information of hepatobiliary diseases in pediatric inpatients using cross-sectional survey data throughout the Republic of Korea. Methods: Nationwide cross-sectional survey was obtained from the 85 residency training hospitals in Korea to gather the final diagnosis on discharge. The surveyed periods were from 2004 to 2006. All the reports regarding the diagnosis were based on ICD-10 system. In this study, we focused on hepatobiliary diseases. Results: A total of 826,896 cases with discharge data were collected, of which 4,151 (5.0%) hepatobiliary cases were identified; 2,385 cases (57.4%) of hepatobiliary disease were hepatitis, which was the most common hepatobiliary disease. Other diseases included congenital hepatobiliary diseases (524 cases [12.6%]) and biliary diseases (315 cases [7.6%]). The prevalence of hepatobiliary disease according to age differed. Biliary atresia was the most common hepatobiliary disease in the neonatal period, whereas the prevalence of hepatitis increased in adolescents. The total number of hepatobiliary operations was 416 cases. With the comparison of annual data, there was no definite difference in the total number of hepatobiliary cases. The average duration of hospital stay appeared to decrease gradually. Conclusion: In this study, we have summarized the recent epidemiology of hepatobiliary disorders in Korean children based on discharge data. Hepatobiliary disorders in pediatric inpatient units consisted of diverse disorders with a low prevalence, so multi-center approaches should be considered to enhance the clinical and public health outcomes. To improve this nationwide survey, a new data collecting system should be developed.

  • PDF

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

Development of processed food database using Korea National Health and Nutrition Examination Survey data (국민건강영양조사 자료를 이용한 가공식품 데이터베이스 구축)

  • Yoon, Mi Ock;Lee, Hyun Sook;Kim, Kirang;Shim, Jae Eun;Hwang, Ji-Yun
    • Journal of Nutrition and Health
    • /
    • v.50 no.5
    • /
    • pp.504-518
    • /
    • 2017
  • Purpose: The objective of this study was to develop a processed foods database (DB) for estimation of processed food intake in the Korean population using data from the Korea National Health and Nutrition Survey (KNHANES). Methods: Analytical values of processed foods were collected from food composition tables of national institutions (Development Institute, Rural Development Administration), the US Department of Agriculture, and previously reported scientific journals. Missing or unavailable values were substituted, calculated, or imputed. The nutrient data covered 14 nutrients, including energy, protein, carbohydrates, fat, calcium, phosphorus, iron, sodium, potassium, vitamin A, thiamin, riboflavin, niacin, and vitamin C. The processed food DB covered a total of 4,858 food items used in the KNHANES. Each analytical value per food item was selected systematically based on the priority criteria of data sources. Results: Level 0 DB was developed based on a list of 8,785 registered processed foods with recipes of ready-to-eat processed foods, one food composition table published by the national institution, and nutrition facts obtained directly from manufacturers or indirectly via web search. Level 1 DB included information of 14 nutrients, and missing or unavailable values were substituted, calculated, or imputed at level 2. Level 3 DB evaluated the newly constructed nutrient DB for processed foods using the 2013 KNHANES. Mean intakes of total food and processed food were 1,551.4 g (males 1,761.8 g, females 1,340.8 g) and 129.4 g (males 169.9 g, females 88.8 g), respectively. Processed foods contributed to nutrient intakes from 5.0% (fiber) to 12.3% (protein) in the Korean population. Conclusion: The newly developed nutrient DB for processed foods contributes to accurate estimation of nutrient intakes in the Korean population. Consistent and regular update and quality control of the DB is needed to obtain accurate estimation of usual intakes using data from the KNHANES.

The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data (천리안해양위성 연속자료 구축을 위한 GOCI-II 임무 초기 주요 해색산출물의 GOCI 자료와 비교 분석)

  • Park, Myung-Sook;Jung, Hahn Chul;Lee, Seonju;Ahn, Jae-Hyun;Bae, Sujung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1281-1293
    • /
    • 2021
  • The recent launch of the GOCI-II enables South Korea to have the world's first capability in deriving the ocean color data at geostationary satellite orbit for about 20 years. It is necessary to develop a consistent long-term ocean color time-series spanning GOCI to GOCI-II mission and improve the accuracy through validation using in situ data. To assess the GOCI-II's early mission performance, the objective of this study is to compare the GOCI-II Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and remote sensing reflectances (Rrs) through comparison with the GOCI data. Overall, the distribution of GOCI-II Chl-a corresponds with that of the GOCI over the Yellow Sea, Korea Strait, and the Ulleung Basin. In particular, a smaller RMSE value (0.07) between GOCI and GOCI-II over the summer Ulleung Basin confirms the GOCI-II data's reliability. However, despite the excellent correlation, the GOCI-II tends to overestimate Chl-a than the GOCI over the Yellow Sea and Korea Strait. The similar over-estimation bias of the GOCI-II is also notable in CDOM. Whereas no significant bias or error is found for Rrs at 490 nm and 550 nm (RMSE~0), the underestimation of Rrs at 443 nm contributes to the overestimation of GOCI-II Chl-a and CDOM over the Yellow Sea and the Korea Strait. Also, we show over-estimation of GOCI-II Rrs at 660 nm relative to GOCI to cause a possible bias in Total suspended sediment. In conclusion, this study confirms the initial reliability of the GOCI-II ocean color products, and upcoming update of GOCI-II radiometric calibration will lessen the inconsistency between GOCI and GOCI-II ocean color products.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.