Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.5.2.6

The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data  

Park, Myung-Sook (Korea Institute and Ocean Science and Technology)
Jung, Hahn Chul (Korea Institute and Ocean Science and Technology)
Lee, Seonju (Korea Institute and Ocean Science and Technology, University of Science and Technology)
Ahn, Jae-Hyun (Korea Institute and Ocean Science and Technology)
Bae, Sujung (Korea Institute and Ocean Science and Technology)
Choi, Jong-Kuk (Korea Institute and Ocean Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.37, no.5_2, 2021 , pp. 1281-1293 More about this Journal
Abstract
The recent launch of the GOCI-II enables South Korea to have the world's first capability in deriving the ocean color data at geostationary satellite orbit for about 20 years. It is necessary to develop a consistent long-term ocean color time-series spanning GOCI to GOCI-II mission and improve the accuracy through validation using in situ data. To assess the GOCI-II's early mission performance, the objective of this study is to compare the GOCI-II Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and remote sensing reflectances (Rrs) through comparison with the GOCI data. Overall, the distribution of GOCI-II Chl-a corresponds with that of the GOCI over the Yellow Sea, Korea Strait, and the Ulleung Basin. In particular, a smaller RMSE value (0.07) between GOCI and GOCI-II over the summer Ulleung Basin confirms the GOCI-II data's reliability. However, despite the excellent correlation, the GOCI-II tends to overestimate Chl-a than the GOCI over the Yellow Sea and Korea Strait. The similar over-estimation bias of the GOCI-II is also notable in CDOM. Whereas no significant bias or error is found for Rrs at 490 nm and 550 nm (RMSE~0), the underestimation of Rrs at 443 nm contributes to the overestimation of GOCI-II Chl-a and CDOM over the Yellow Sea and the Korea Strait. Also, we show over-estimation of GOCI-II Rrs at 660 nm relative to GOCI to cause a possible bias in Total suspended sediment. In conclusion, this study confirms the initial reliability of the GOCI-II ocean color products, and upcoming update of GOCI-II radiometric calibration will lessen the inconsistency between GOCI and GOCI-II ocean color products.
Keywords
GOCI-II; GOCI; Chlorophyll-a concentration; CDOM; Radiometric Calibration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, S., M.-S. Park, and J.H. Ahn, 2019. Multi-year analysis of GOCI products in comparison with MODIS and VIIRS, Proc. of 7th AWOC/16th KJWOC, Dec. 11-14, Chonburi, TH, pp. O-01-02.
2 Choi, J.-K., Y.J. Park, J.H. Ahn, H.-S. Lim, J. Eom, and J-H. Ryu, 2012. GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity, Journal of Geophysical Research-Oceans, 117: C09004.
3 B.A. Franz, S.W. Bailey, G. Meister, and P.J. Werdell, Consistency of the NASA ocean color data record, Proc. of Ocean Optics 2012, Glasgow, Scotland, GB, Oct. 8-12, pp. 1-21.
4 Choi, J.-K., Y.J. Park, B.R. Lee, J. Eom, J.-E. Moon, and J.-H. Ryu, 2014. Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity, Remote Sensing of Environment, 146: 24-35.   DOI
5 Ahn, J. H., Y.J. Park, J.H. Ryu, B. Lee, and I.S. Oh, 2012. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI), Ocean Science Journal, 47(3): 247-259.   DOI
6 Ahn, J.H., Y.J. Park, W. Kim, B. Lee, 2016. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans, Optics Express, 24(26): 29659-29669.   DOI
7 Ahn, J.H., Y.J. Park, W. Kim, B. Lee, and I.S. Oh, 2015. Vicarious calibration of the geostationary ocean color imager, Optics Express, 23(18): 23236-23258.   DOI
8 Ahn, J.H. and Y.J. Park, 2020. Estimating Water Reflectance at Near-Infrared Wavelengths for Turbid Water Atmospheric Correction: A Preliminary Study for GOCI-II, Remote Sensing, 12(22): 3791.   DOI
9 Park, M.-S., Y.-S. Choi, C.-H. Ho, C.-H. Sui, S.-K. Park, and M.-H. Ahn, 2007. Regional cloud characteristics over the tropical northwestern Pacific as revealed by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and TRMM Microwave Imager, Journal of Geophysical Research: Atmospheres, 112: D05209.   DOI
10 Behrenfeld, M.J., R.T. O'Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman, A.J. Milligan, P.G. Falkowski, R.M. Letelier, and E.S. Boss, 2006. Climate-driven trends in contemporary ocean productivity, Nature, 444(7120): 752-755.   DOI
11 Doxaran, D., N. Lamquin, Y.J. Park, C. Mazeran, J.H. Ryu, M. Wang, and A. Poteau, 2014. Retrieval of the seawater reflectance for suspended solids monitoring in the East China sea using MODIS, MERIS and GOCI satellite data, Remote Sensing Environment, 146: 36-48.   DOI
12 Kim, W., J.E. Moon, Y.J. Park, and J. Ishizaka, 2016. Evaluation of chlorophyll retrievals from geostationary ocean color imager (GOCI) for the North-East Asian region, Remote Sensing of Environment, 184: 482-495.   DOI
13 Dutkiewicz, S., A.E. Hickman, O. Jahn, S. Henson, C. Beaulieu, and E. Monier, 2019. Ocean colour signature of climate change, Nature Communications, 10(1): 578.   DOI
14 Gordon, H.R. and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Applied Optics, 33(3): 443-452.   DOI
15 Kang, G. and H. Youn, 2009, Analysis of Non-linearity Characteristic of GOCI, Aerospace Engineering and Technology, 8(2): 1-7 (in Korean with English abstract).
16 Kim, Y.-J. H.-C. Kim, Y.-B. Son, M.-O. Park, W.-C. Shin, and T.-K. Rho, 2012, Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea, Korean Journal of Remote Sensing, 28(4): 421-434 (in Korea with English).   DOI
17 Nechad, B., K.G. Ruddick, and Y. Park, 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters, Remote Sensing of Environment, 114(4): 854-866.   DOI
18 Lee, S., M.-S. Park, M. Kwon, Y.-H. Kim, and Y.-K. Park, 2020: Two major modes of East Asian marine heatwaves, Environmental Research Letters, 15(7): 074008.   DOI
19 Moon, J.-E., Y.J. Park, J.-H. Ryu, J.-K. Choi, J.H. Ahn, J.E. Min, Y.-B. Son, S.J. Lee, H.J. Han, and Y.H. Ahn, 2012. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010-2011, Ocean Science Journal, 47(3): 261-277.   DOI
20 Morel, A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: A reappraisal, Journal of Geophysical Research, 106(C4): 7163-7180.   DOI
21 Noh, J.H., W. Kim, S.H. Son, J.H. Ahn, and Y.J. Park, 2018. Remote quantification of cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI), Harmful Algae, 73: 129-137.   DOI
22 O'Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Gaver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS, Journal of Geophysical Research, 103(C11): 24937-24953.   DOI
23 Park, H.S. and M.O. Park, 2018. Comparison of distribution and characteristics of CDOM in Spring 2012 and 2014 in the Southwestern East Sea of Korea, Journal of the Korean Society of Marine Environment and Afety, 24: 553-568 (in Korean with English abstract).   DOI
24 Siswanto, E., J. Tang, H. Yamaguchi, Y.H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, 2011. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas, Journal of Oceanography, 67(5): 627-650.   DOI
25 Zhang, M.W., J.W. Tang, Q. Dong, Q.T. Song, and J. Ding, 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery, Remote Sensing of Environment, 114(2): 392-403.   DOI
26 Ahn, J.-H., K.S. Kim, E.-K. Lee, Sujung Bae, K.-S. Lee, J.-E. Moon, T.-H. Han, and Y.-J. Park, 2021: Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations, Korean Journal of Remote Sensing, 37(5-2): 1259-1268 (in Korean with English abstract).   DOI
27 Tang, J., X. Wang, Q. Song, T. Li, J. Chen, H. Huang, and J. Ren, 2004. The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea, Acta Oceanologica Sinica, 23(4): 617-626.