• Title/Summary/Keyword: data space

Search Result 10,094, Processing Time 0.036 seconds

Proposals for Korean Space Observation Data Strategies (한국 우주관측 자료 전략 수립 제안)

  • Baek, Ji-Hye;Choi, Seonghwan;Park, Jongyeob;Kim, Sujin;Sim, Chae Kyung;Yang, Tae-Yong;Jeong, Minsup;Jo, Young-Soo;Choi, Young-Jun
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.241-255
    • /
    • 2021
  • Space observation data includes research data such as stars, galaxies, Sun, space plasma, planets, and minor bodies observed through space missions, including processing and utilizing the observation data. Astronomy and space science observation systems are getting larger, and space mission opportunities and data size are increasing. Accordingly, the need for systematic and efficient management of space observation data is growing. Therefore, in Korea, a strategy and policy for space observation data should be established. As a stage of preparation, National Aeronautics and Space Administration (NASA)'s data strategy, which developed from extensive understanding and long-term experience for space observation data, was analyzed. Based on the analysis results, we propose a strategic direction and 10 recommendations for Korean space observation data strategies that will be the basis for establishing space observation data policies in the future.

DEVELOPMENT OF DATA INTEGRATION SYSTEM FOR GROUND-BASED SPACE WEATHER OBSERVATIONAL FACILITIES (우주환경 지상관측기 자료통합시스템 개발)

  • Baek, Ji-Hye;Choi, Seonghwan;Lee, Jae-Jin;Kim, Yeon-Han;Bong, Su-Chan;Park, Young-Deuk;Kwak, Young-Sil;Cho, Kyung-Suk;Hwang, Junga;Jang, Bi-Ho;Yang, Tae-Yong;Hwang, Eunmi;Park, Sung-Hong;Park, Jongyeob
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • We have developed a data integration system for ground-based space weather facilities in Korea Astronomy and Space Science Institute (KASI). The data integration system is necessary to analyze and use ground-based space weather data efficiently, and consists of a server system and data monitoring systems. The server system consists of servers such as data acquisition server or web server, and storage. The data monitoring systems include data collecting and processing applications and data display monitors. With the data integration system we operate the Space Weather Monitoring Lab (SWML) where real-time space weather data are displayed and our ground-based observing facilities are monitored. We expect that this data integration system will be used for the highly efficient processing and analysis of the current and future space weather data at KASI.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.

BITSE Ground Software

  • Baek, Ji-Hye;Park, Jongyeob;Choi, Seonghwan;Kim, Jihun;Yang, Heesu;Kim, Yeon-Han;Swinski, Joseph-Paul A.;Newmark, Jeffrey S.;Gopalswamy, Nat.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2019
  • We have developed Ground Software (GSW) of BITSE. The ground software includes mission operation software, data visualization software and data processing software. Mission operation software is implemented using COSMOS. COSMOS is a command and control system providing commanding, scripting and data visualization capabilities for embedded systems. Mission operation software send commands to flight software and control coronagraph. It displays every telemetry packets and provides realtime graphing of telemetry data. Data visualization software is used to display and analyze science image data in real time. It is graphical user interface (GUI) and has various functions such as directory listing, image display, and intensity profile. The data visualization software shows also image information which is FITS header, pixel resolution, and histogram. It helps users to confirm alignment and exposure time during the mission. Data processing software creates 4-channel polarization data from raw data.

  • PDF

Data-based Control for Linear Time-invariant Discrete-time Systems

  • Park, U. S.;Ikeda, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1993-1998
    • /
    • 2004
  • This paper proposes a new framework for control system design, called the data-based control approach or data space approach, in which the input and output data of a dynamical system is directly and solely used to analyze or design a control system without the employment of any mathematical models like transfer functions, state space equations, and kernel representations. Since, in this approach, most of the analysis and design processes are carried out in the domain of the data space, we introduce some notions of geometrical objects, e.g., the openloop and closed-loop data spaces, which serve as the system representations in the data space. In addition, we establish a relationship between the open-loop and closed-loop data spaces that the closed-loop data space is contained in the open-loop data space as one of its subspaces. By using this relationship, we can derive the data-based stabilization condition for a linear time-invariant discrete-time system, which leads to a linear matrix inequality with a rank constraint.

  • PDF

Design of Korean Data Center for SDO

  • Choi, Seong-Hwan;Hwang, Eun-Mi;Cho, Kyung-Suk;Kim, Yeon-Han;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • NASA launched Solar Dynamics Observatory (SDO) on February 2011 in order to understand the cause of solar activities and their influences on the Earth and the near-Earth space. KASI is constructing Korean Data Center for SDO based on the letter of agreement between KASI and NASA for space weather research. SDO produces about 1.5 TB a day and its raw data amounts to about 550 TB in a year. Stanford University has been already operating the data center for scientific raw data, but there is a limit to use its data for space weather research and space weather service in real time because of network environment. Korean Data Center for SDO will provide scientific data not only to Korean institutes but also to international space weather societies. KASI has designed the data transfer system by using GLORIAD in order to get higher performance and stability. After the first construction of data transfer system and storage system in this year, we will increase the storage capacity of the data center in phases considering new developments in a storage technology and drop of their prices.

  • PDF

A Study of Data Acquiring Characteristics Through Image Evaluation by Types of Interior Space - Focused on Gender Comparisons - (실내공간의 유형별 이미지 평가를 통한 정보획득특성에 관한 연구 - 성별 비교를 중심으로 -)

  • Choi, Gae-Young;Choi, Joo-Young;Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.143-151
    • /
    • 2011
  • Since it is important to understand data acquiring characteristics through relationship between spatial types and spatial elements and apply it to spatial plans for smooth communication between designer and user of space, the conclusions gained from analysis of data acquiring characteristics of spatial elements through image evaluation by types of interior space can be summarized as in the followings: First, for the amount of acquired data by types of interior space, it shows that the acquired amount of data is to change by types and data acquiring method (phrase and image) even though the spatial elements are same. Second, for the data acquiring process of spatial types by gender, it shows that there is a big difference in acquiring of data according to the evaluation method by phrase and image. Third, for the amount of acquired data of spatial types by gender, it shows that there is a difference between male and female, which is by "classic ${\rightarrow}$ modern ${\rightarrow}$ natural" in case of male and "classic ${\rightarrow}$ natural ${\rightarrow}$ modern" in case of female. regarding both of phrase and image. Fourth, for the evaluation by gender, it shows that there is a deviation in the value of difference according to the elements by which data acquiring characteristics evaluate space. It is considered that this deviation characteristic is in need of reflection in the process of spatial evaluation. This study analyzed data acquiring characteristics of space user's spatial elements through image evaluation by types of space to understand how data acquiring would be changed of spatial elements according to type and gender. Through this study, it expects to make clear that, when a designer is planning a certain space, if the space can be a space for the user by understanding of which elements should be exposed to users by types to acquire more data.

Development of a Data Reduction algorithm for Optical Wide Field Patrol

  • Park, Sun-Youp;Keum, Kang-Hoon;Lee, Seong-Whan;Jin, Ho;Park, Yung-Sik;Yim, Hong-Suh;Jo, Jung Hyun;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Jin;Choi, Young-Jun;Park, Jang-Hyun;Lee, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.193-206
    • /
    • 2013
  • The detector subsystem of the Optical Wide-field Patrol (OWL) network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS) solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

Study on the Spatial Standard for Data Reading Rooms in Public Libraries (공공도서관 자료열람실 공간기준에 관한 연구)

  • Lim, Ho-Kyun
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.328-335
    • /
    • 2013
  • This study investigated the ratios of area, according to the domains and functions, of a public library. To this end, 20 public libraries were selected as samples from the 2012 Public Library Construction Casebook and from cases of consulting on the construction and operation of public libraries. The domains of a public library were categorized into data reading, cultural education, operation, common use, and others. There was a large difference in the area ratios between public libraries that were built with the aid of consulting (Group B) and those without consulting (Group A). In functional terms, the data(bookshelf) space and reading space had similar ratios within a data reading room, while the ratio of the library information space was smaller. Within a general data reading room, the ratio of the library information space was 12%, while the ratios of the data space and seating space were 44%, respectively. Moreover, within a data reading room for children, the ratios of the library information space and children's space were adjusted to 14%, respectively, while the data space and seating space each accounted for 36%, with either 3- or 5-decker bookshelves installed. This study has identified how to calculate the area for each domain, capacity of books, and seating capacity by applying area ratios through functions in the data storage domain, along with numbers of books and seats per unit space. This study has also succeeded in calculating the required area and seats for each type of data storage room by applying the number of books that exist. However, this study has its limitation in that the regional characteristics(Metropolis, Small & medium size cities, Rural areas) were not considered because the number of samples was only 20 libraries.

Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

  • Park, Sun-Youp;Choi, Jin;Roh, Dong-Goo;Park, Maru;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Cho, Sungki;Choi, Eun-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.