• Title/Summary/Keyword: data segmentation

Search Result 1,227, Processing Time 0.026 seconds

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

A Multi-Layer Perceptron for Color Index based Vegetation Segmentation (색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망)

  • Lee, Moon-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

On-Line Topic Segmentation Using Convolutional Neural Networks (합성곱 신경망을 이용한 On-Line 주제 분리)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.585-592
    • /
    • 2016
  • A topic segmentation module is to divide statements or conversations into certain topic units. Until now, topic segmentation has progressed in the direction of finding an optimized set of segments for a whole document, considering it all together. However, some applications need topic segmentation for a part of document which is not finished yet. In this paper, we propose a model to perform topic segmentation during the progress of the statement with a supervised learning model that uses a convolution neural network. In order to show the effectiveness of our model, we perform experiments of topic segmentation both on-line status and off-line status using C99 algorithm. We can see that our model achieves 17.8 and 11.95 of Pk score, respectively.

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

Algorithm of Converged Corner Detection-based Segmentation in the Data Matrix Barcode (코너 검출 기반의 융합형 Data Matrix 바코드 분할 알고리즘)

  • Han, Hee-June;Lee, Jong-Yun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • A segmentation process extracts an interesting area of barcode in an image and gives a crucial impart on the performance of barcode verifier. Previous segmentation methods occurs some issues as follows. First, it is very hard to determine a threshold of length in Hough Line transform because it is sensitive. Second, Morphology transform delays the process when you conduct dilation and erosion operations during the image extraction. Therefore, we proposes a novel Converged Harris Corner detection-based segmentation method to detect an interesting area of barcode in Data Matrix. In order to evaluate the performance of proposed method, we conduct experiments by a dataset of barcode in accordance with size and location in an image. In result, our method solves the problems of delay and surrounding environments, threshold setting, and extracts the barcode area 100% from test images.

Splitting Algorithm Using Total Information Gain for a Market Segmentation Problem

  • Kim, Jae-Kyeong;Kim, Chang-Kwon;Kim, Soung-Hie
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.2
    • /
    • pp.183-203
    • /
    • 1993
  • One of the most difficult and time-consuming stages in the development of the knowledge-based system is a knowledge acquisition. A splitting algorithm is developed to infer a rule-tree which can be converted to a rule-typed knowledge. A market segmentation may be performed in order to establish market strategy suitable to each market segment. As the sales data of a product market is probabilistic and noisy, it becomes necessary to prune the rule-tree-at an acceptable level while generating a rule-tree. A splitting algorithm is developed using the pruning measure based on a total amount of information gain and the measure of existing algorithms. A user can easily adjust the size of the resulting rule-tree according to his(her) preferences and problem domains. The algorithm is applied to a market segmentation problem of a medium-large computer market. The algorithm is illustrated step by step with a sales data of a computer market and is analyzed.

  • PDF

DIRECT COMPARISON STUDY OF THE CAHN-HILLIARD EQUATION WITH REAL EXPERIMENTAL DATA

  • DARAE, JEONG;SEOKJUN, HAM;JUNSEOK, KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-342
    • /
    • 2022
  • In this paper, we perform a direct comparison study of real experimental data for domain rearrangement and the Cahn-Hilliard (CH) equation on the dynamics of morphological evolution. To validate a mathematical model for physical phenomena, we take initial conditions from experimental images by using an image segmentation technique. The image segmentation algorithm is based on the Mumford-Shah functional and the Allen-Cahn (AC) equation. The segmented phase-field profile is similar to the solution of the CH equation, that is, it has hyperbolic tangent profile across interfacial transition region. We use unconditionally stable schemes to solve the governing equations. As a test problem, we take domain rearrangement of lipid bilayers. Numerical results demonstrate that comparison of the evolutions with experimental data is a good benchmark test for validating a mathematical model.

Segmentation of Scalp and Skull in brain MR Images Using CannyEdge Level Set Method

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.668-671
    • /
    • 2010
  • In this paper, we present a novel automatic algorithm for scalp and skull segmentation in T1-weighted head MR images. First, the scalp and skull part are constructed by using intensity threshold. Second, the scalp outer surface is extracted based on an active level set method. Third, the skull inner surface is extracted using a canny edge detection algorithm. Finally, the fast sweeping, tagging and level set methods are applied to reconstruct surfaces from the detected points in three-dimensional space. The results of the new segmentation algorithm on MRI data acquired from eight persons were compared with manual segmented data. The average similarity indices for the scalp and skull segmented regions were equal to 84.42% for the test data.

Tracking of Multiple Vehicles Using Occlusion Segmentation Based on Spatio-Temporal Association

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.19-23
    • /
    • 2011
  • This paper proposes a segmentation method for overlapped vehicles based on analysis of the vehicle location and the spatiotemporal association information. This method can be used in an intelligent transport system. In the proposed method, occlusion is detected by analyzing the association information based on a vehicle's location in continuous images, and occlusion segmentation is carried out by using the vehicle information prior to occlusion. In addition, the size variations of the vehicle to which association tracking is applied can be anticipated by learning the variations according to the overlapped vehicles' movements. To assess the performance of the suggested method, image data collected from CCTVs recording traffic information is used, and average success rate of occlusion segmentation is 96.9%.

Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model (계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.