• Title/Summary/Keyword: data pattern

Search Result 8,369, Processing Time 0.038 seconds

Study on Faults Diagnosis of Nuclear Pressure Boundary Components using Pattern Recognition of Nuclear Power Plant Simulator Data (원자력발전소 시뮬레이터 데이터의 패턴인식을 이용한 압력경계기기 고장 진단 연구)

  • Ahn, Hongmin;Choi, Hyunwoo;Kang, Seongki;Chai, Jangbom
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.48-53
    • /
    • 2017
  • We diagnosed the defect using the data obtained from the nuclear power plant simulator. In this paper, we diagnosed faults in the nuclear power plant system for discovery instead of the traditional single-component or device unit. We created the six fault scenarios and used a fault simulator to obtain the fault data. It was extracted pattern from acquired failure data. Neural network model was trained and simple pattern matching algorithm was applied. We presented a simulation result and confirmed that the applied algorithm works correctly.

Study on the Basic Bodice Pattern Grading according to the Measurement Variations of the Body (인체 부위별 치수증감을 반영한 길 원형 그레이딩에 관한 연구)

  • Jung, Myoung-Sook
    • The Korean Journal of Community Living Science
    • /
    • v.20 no.4
    • /
    • pp.571-578
    • /
    • 2009
  • This study was to apply the measurement variations of each region of the body to the basic bodice pattern grading and to provide the clothing pattern fit for the human body. Grading variation used in the apparel industry was researched and new grading variation was proposed by analyzing the statistical data of body measurements. The statistical variation in body measurements was applied to set the optimum grading region and variation. Five sizes were used by split grading method and drawn with Bust Circumference and waist length based on the middle size. Differences between the grading pattern and the drawing pattern were analyzed by overlapping them and measuring each region. The measurement variations of drawing patterns between the sizes were very different from those of statistical data. On the other hand, the measurement variations of grading patterns between the sizes and those of statistical data were similar. In summary, the grading pattern by applying the measurement variations to the region of the body was superior to the drawing pattern drawn by the basic measurements for clothing fitness.

  • PDF

Inference on the Joint Center of Rotation by Covariance Pattern Models

  • Kim, Jinuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • Objective: In a statistical linear model estimating the center of rotation of a human hip joint, which is the parameter related to the mean of response vectors, assumptions of homoscedasticity and independence of position vectors measured repeatedly over time in the model result in an inefficient parameter. We, therefore, should take into account the variance-covariance structure of longitudinal responses. The purpose of this study was to estimate the efficient center of rotation vector of the hip joint by using covariance pattern models. Method: The covariance pattern models are used to model various kinds of covariance matrices of error vectors to take into account longitudinal data. The data acquired from functional motions to estimate hip joint center were applied to the models. Results: The results showed that the data were better fitted using various covariance pattern models than the general linear model assuming homoscedasticity and independence. Conclusion: The estimated joint centers of the covariance pattern models showed slight differences from those of the general linear model. The estimated standard errors of the joint center for covariance pattern models showed a large difference with those of the general linear model.

The Auto Regressive Parameter Estimation and Pattern Classification of EKS Signals for Automatic Diagnosis (심전도 신호의 자동분석을 위한 자기회귀모델 변수추정과 패턴분류)

  • 이윤선;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1988
  • The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.

  • PDF

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

Sequential Pattern Mining for Intrusion Detection System with Feature Selection on Big Data

  • Fidalcastro, A;Baburaj, E
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5023-5038
    • /
    • 2017
  • Big data is an emerging technology which deals with wide range of data sets with sizes beyond the ability to work with software tools which is commonly used for processing of data. When we consider a huge network, we have to process a large amount of network information generated, which consists of both normal and abnormal activity logs in large volume of multi-dimensional data. Intrusion Detection System (IDS) is required to monitor the network and to detect the malicious nodes and activities in the network. Massive amount of data makes it difficult to detect threats and attacks. Sequential Pattern mining may be used to identify the patterns of malicious activities which have been an emerging popular trend due to the consideration of quantities, profits and time orders of item. Here we propose a sequential pattern mining algorithm with fuzzy logic feature selection and fuzzy weighted support for huge volumes of network logs to be implemented in Apache Hadoop YARN, which solves the problem of speed and time constraints. Fuzzy logic feature selection selects important features from the feature set. Fuzzy weighted supports provide weights to the inputs and avoid multiple scans. In our simulation we use the attack log from NS-2 MANET environment and compare the proposed algorithm with the state-of-the-art sequential Pattern Mining algorithm, SPADE and Support Vector Machine with Hadoop environment.

A Study on the Use of 3D Human Body Surface Shape Scan Data for Apparel Pattern Making (의류 패턴 설계를 위한 삼차원 인체 체표면 스캔 데이터 활용에 관한 연구)

  • 천종숙;서동애;이관석
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • In the apparel industry, the technology has been advanced rapidly. The use of 3D scanning systems fur the capture and measurement of human body is becoming common place. Three dimensional digital image can be used for design, inspection, reproduction of physical objects. The purpose of this study is to develop a method that drafts men's basic bodice pattern from scanned 3D body surface shape data. In order to pursue this purpose the researchers developed pattern drafting algorithm. The 3D scanner used in this study was Cyberware Whole Body Scanner WB-4. The bodice pattern drafting algorithm from 3D body surface shape data developed in this study is as follows. First, convert geometric 3D body surface data to 3D polygonal mesh data. Second, develop algorithm to lay out 3D polygonal patches onto a plane using Auto Lisp program. The polygon meshes are coplanar, and the individual mesh is continuously in contact with next one The bodice front surface shape data in polygonal patches form was lined up in bust and waist levels. The back bodice was drafted by lining up the polygonal mesh in scapula, chest, and waist levels. in the drafts, gaps between polygons were formed into the darts.

  • PDF

Selective Data Reduction in Gas Chromatography/Infrared Spectrometry

  • Pyo, Dong Jin;Sin, Hyeon Du
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.488-492
    • /
    • 2001
  • As gas chromatography/infrared spectrometry (GC/IR) becomes routinely avaliable, methods must be developed to deal with the large amount of data produced. We demonstrate computer methods that quickly search through a large data file, locating thos e spectra that display a spectral feature of interest. Based on a modified library search routine, these selective data reduction methods retrieve all or nearly all of the compounds of interest, while rejecting the vast majority of unrelated compounds. To overcome the shifting problem of IR spectra, a search method of moving the average pattern was designed. In this moving pattern search, the average pattern of a particular functional group was not held stationary, but was allowed to be moved a little bit right and left.

Data Pattern Estimation with Movement of the Center of Gravity

  • Ahn Tae-Chon;Jang Kyung-Won;Shin Dong-Du;Kang Hak-Soo;Yoon Yang-Woong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.210-216
    • /
    • 2006
  • In the rule based modeling, data partitioning plays crucial role be cause partitioned sub data set implies particular information of the given data set or system. In this paper, we present an empirical study result of the data pattern estimation to find underlying data patterns of the given data. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). In each sequence, the average value of the sum of all inter-distance between centroid and data point. In the sequel, compute the derivation of the weighted average distance to observe a pattern distribution. For the final step, after overall clustering process is completed, weighted average distance value is applied to estimate range of the number of clusters in given dataset. The proposed estimation method and its result are considered with the use of FCM demo data set in MATLAB fuzzy logic toolbox and Box and Jenkins's gas furnace data.

Development of 2D Patterns for Cycling Pants using 3D Data of Human Movement and Stretch Fabric (동작시 3D 정보를 이용한 2D 패턴 전개 및 신축성 원단의 신장률을 고려한 사이클 팬츠 개발)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Korean Journal of Human Ecology
    • /
    • v.19 no.3
    • /
    • pp.555-563
    • /
    • 2010
  • With recent advances in 3D scanning technology, three-dimensional (3D) patternmaking is becoming a powerful way to develop garments pattern. This technology is now applicable to the made to measure (MTM) system of both ordinary and tightly fitting garments. Although the pattern of fitted clothing has been developed using 3D human data, it is still interesting to develop cycling pants by considering while-cycling body posture and fabric elasticity. This study adopted the Garland's triangle simplification method in order to simplify data without distorting the original 3D scan. Next, the Runge-Kutta method (2C-AN program) was used to develop a 2D pattern from the triangular pixels in the 3D scanned data. The 3D scanned data of four male, university students aged from 21 to 25, was obtained using Whole body scanner (Model WB4, Cyberware, Inc., USA). Results showed the average error of measurement was $4.58cm^2$ (0.19%) for area and 0~0.61cm for the length between the 3D body scanned data and the 2D developed pattern data. This is an acceptable range of error for garment manufacture. Additionally, the 2D pattern developed, based on the 3D body scanned data, did not need ease for comfort or ease of movement when cycling. This study thus provides insights into how garment patterns may be developed for ergonomic comfort in certain special environments.