• Title/Summary/Keyword: data learning process

Search Result 2,087, Processing Time 0.03 seconds

Qualitative Case Study on Life of non-disabled Adolescent of Parents with Intellectual Disability (지적장애 부모를 둔 비장애 청소년의 삶에 관한 질적 사례연구)

  • Kang, Seung Won
    • Korean Journal of Social Welfare
    • /
    • v.68 no.3
    • /
    • pp.73-103
    • /
    • 2016
  • In this study, it investigates the life of normal adolescents who have parents with intellectual disability and their difficulties which suggested social welfare meanings of this study. In order to conduct wide and in-depth analysis on cases by utilizing the characteristics of qualitative case studies, it describes and analyzes the intellectual disability parents' normal children in detail from the viewpoint of an insider through in-depth interviews, various sources and diverse data collecting methods. As for the subject of this study, both parents should be persons with intellectual disability and their child shall be non-disabled and at least a high school student or older. Through the intentional sampling, five late adolescents who were in high school, all males participated in the study. The data collection process had been conducted from January 2014 to May, which is commonly utilized for qualitative case studies, and comparative analysis between cases were practiced for analysis. For credibility of the research results, it obtained severity at each stage by meeting the standard. The analysis results were largely divided into "growth story of non-disabled adolescents" and "life of non-disabled adolescents". Nine upper categories analyzed the common features in each case. The nine categories were "no one tells me to study", "advance while learning the sense of academic achievement", "hide into my own space", "having to grown up early", "different parents but same love", "relatives raised me", "have a friend who accepts me as I am", "being pressed by poverty", and "standing on a knife edge of being hurt and taking heart". Based on the in-depth research on normal teens that have intellectually disabled parents, theoretically speaking, this study expanded the prospect of study on intellectually disabled to their normal, intellectual teenage children. As for practical significance, understanding their parents' intellectual disability, parenting technique training, case management from the community level is suggested. Rregular real condition research of the families, allowance system for economic support et al. is suggested in policy aspect.

  • PDF

A Comparative Study on Institutional Influence Factors of Firm's Motivation of Participating and Investing in Apprenticeship in Germany and Korea (기업의 도제훈련 참여 및 투자 동기의 제도적 영향요인: 독일-한국 비교 연구)

  • LEE, Hanbyul
    • Korean Journal of Comparative Education
    • /
    • v.27 no.1
    • /
    • pp.247-284
    • /
    • 2017
  • The purpose of this study is to analyze firm's motivation of participating and investing in apprenticeship in Germany and Korea, and to investigate institutional factors influencing firm's motivation. By comparing institutional factors of the two countries, it aims to drawing out policy implications for improving Korean apprenticeship. The main method for data collection was comprehensive literature review on international organizations, each countries' government and research institutes' policy materials, statistical data, research outputs and media resources related to each countries' apprenticeship. Considering whether firm's motivation for participating and investing in apprenticeship is production-oriented or investment-oriented, Germany is more inclined to investment motivation with firm's covering net cost during apprenticeship period. On the other hand, Korea is more inclined toward production orientation with firm's expectation of gaining net profit during the training period. Why is firm's training motivation different in these two countries? The author tried to find the reason from the difference of institutional factors of the countries by dividing institutional factors into 4 categories: context(tripartite relations, legal framework), input (flexibility of the system, government incentive), process(training contents, training duration, quality assurance), and output(completion/retention rate, apprentice's productivity). The key implication from the comparative analysis of institutional factors is that it is necessary to enforce companies to have "accountability" on the minimum critical elements, but also to ensure them to have "autonomy" on the rest of the elements.

Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea (위성기반 증발산량 및 토양수분량 산정 국내 연구동향)

  • Choi, Ga-young;Cho, Younghyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1141-1180
    • /
    • 2022
  • The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations of satellite-based evapotranspiration and soil moisture with related development researches. In this study, we presented the research status in Korea by investigating the current trends and methodologies for evapotranspiration and soil moisture. As a result of examining the detailed methodologies, we have ascertained that, in general, evapotranspiration is estimated using Energy balance models, such as Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration (METRIC). In addition, Penman-Monteith and Priestley-Taylor equations are also used to estimate evapotranspiration. In the case of soil moisture, in general, active (AMSR-E, AMSR2, MIRAS, and SMAP) and passive (ASCAT and SAR)sensors are used for estimation. In terms of statistics, deep learning, as well as linear regression equations and artificial neural networks, are used for estimating these parameters. There were a number of research cases in which various indices were calculated using satellite-based data and applied to the characterization of drought. In some cases, hydrological cycle factors of evapotranspiration and soil moisture were calculated based on the Land Surface Model (LSM). Through this process, by comparing, reviewing, and presenting major detailed methodologies, we intend to use these references in related research, and lay the foundation for the advancement of researches on the calculation of satellite-based hydrological cycle data in the future.

A modified U-net for crack segmentation by Self-Attention-Self-Adaption neuron and random elastic deformation

  • Zhao, Jin;Hu, Fangqiao;Qiao, Weidong;Zhai, Weida;Xu, Yang;Bao, Yuequan;Li, Hui
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Despite recent breakthroughs in deep learning and computer vision fields, the pixel-wise identification of tiny objects in high-resolution images with complex disturbances remains challenging. This study proposes a modified U-net for tiny crack segmentation in real-world steel-box-girder bridges. The modified U-net adopts the common U-net framework and a novel Self-Attention-Self-Adaption (SASA) neuron as the fundamental computing element. The Self-Attention module applies softmax and gate operations to obtain the attention vector. It enables the neuron to focus on the most significant receptive fields when processing large-scale feature maps. The Self-Adaption module consists of a multiplayer perceptron subnet and achieves deeper feature extraction inside a single neuron. For data augmentation, a grid-based crack random elastic deformation (CRED) algorithm is designed to enrich the diversities and irregular shapes of distributed cracks. Grid-based uniform control nodes are first set on both input images and binary labels, random offsets are then employed on these control nodes, and bilinear interpolation is performed for the rest pixels. The proposed SASA neuron and CRED algorithm are simultaneously deployed to train the modified U-net. 200 raw images with a high resolution of 4928 × 3264 are collected, 160 for training and the rest 40 for the test. 512 × 512 patches are generated from the original images by a sliding window with an overlap of 256 as inputs. Results show that the average IoU between the recognized and ground-truth cracks reaches 0.409, which is 29.8% higher than the regular U-net. A five-fold cross-validation study is performed to verify that the proposed method is robust to different training and test images. Ablation experiments further demonstrate the effectiveness of the proposed SASA neuron and CRED algorithm. Promotions of the average IoU individually utilizing the SASA and CRED module add up to the final promotion of the full model, indicating that the SASA and CRED modules contribute to the different stages of model and data in the training process.

Digital color practice using Adobe AI intelligence research on application method - Focusing on color practice through Adobe Sensei - (어도비 AI 지능을 활용한 디지털 색채 실습에 관한 적용방식 연구 -쎈쎄이(Adobe Sensei)을 통한 색채 실습을 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.801-806
    • /
    • 2022
  • In the modern era, the necessity of color capability in the digital era is the demand of the era, and research on improving color practice on the subdivided digital four areas that are not in the existing practice is needed. For digital majors who are difficult to solve in existing paint color practice, classes in digital color practice in four more specialized areas are needed, and the use of efficient artificial intelligence was studied for classes in digitized color and color sense. In this paper, we tried to show the expansion of the color practice area by suggesting digital color practice and color matching method based on Photoshop artificial intelligence and big data technology that existing color and color matching were practice that only CMYK could do. In addition, based on the color quantification data of individual users provided by the latest Adobe Sceney program artificial intelligence, the purpose of the practice was to improve learners' predictions of actual color combinations and random colors using filter effects. In conclusion, it is a study on the use of programs that eliminate ambiguity in the mixing process of existing paint practice, secure digital color details, and propose a practical method that can provide effective learning methods for beginners and intermediates to develop their senses through artificial intelligence support. The Adobe program practice method necessary for coloration and main color through theoretical consideration and improvement of teaching skills that are better than existing paint practice were presented.

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

A Study on the Development and Validation of Digital Literacy Measurement for Middle School Students

  • Hee Chul Kim;Ji Young Lim;Iljun Park;Myoeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.177-188
    • /
    • 2023
  • The purpose of this study is to develop and validate a scale for measuring digital literacy by identifying the factors consisting of digital literacy and extracting items for each factor. Preliminary items for the Delphi study were developed through the analysis of previous literature and the deliberation of the research team. As a result of two rounds of the expert Delphi study, 65 items were selected for the main survey. The validation of the items was carried out in the process of exploratory and confirmatory factor analyses, reliability test, and criterion validity test using the data collected in the main survey. As a result, a 4-factor structure composed of 31 questions(factor 1: digital technology & data literacy- 9 questions, factor 2: digital content & media literacy- 8 questions, factor 3: digital communication & community literacy- 9 questions, factor 4: digital wellness literacy - 5 questions) was confirmed. Also, the goodness of fit indices of the model were found to be good and the result of reliability test revealed the scale had a very appropriate level of Cronbach's alpha(α=.956). In addition, a statistically significantly positive correlations(p<.001) were found between digital literacy and internet self-efficacy and between digital literacy and self-directed learning ability, which were predicted in the existing evidence, therefore the criterion validity of the developed scale was secured. Finally, practical and academic implications of the study are provided and future study and limitations of the study are discussed.

Perceptions on Microcomputer-Based Laboratory Experiments of Science Teachers that Participated in In-Service Training (연수에 참여한 교사들의 MBL실험에 대한 인식)

  • Park, Kum-Hong;Ku, Yang-Sam;Choi, Byung-Soon;Shin, Ae-Kyung;Lee, Kuk-Haeng;Ko, Suk-Beum
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • The aim of this study was to investigate teachers' perceptions on MBL (microcomputer-based laboratory) experiment training program for teachers, the expecting effects of MBL experiment and application of MBL experiment after conducting MBL experiment training for science classes in schools. This study showed that most of the teachers who participated in the training program thought that the MBL experiment training program was very useful and instructive. Many teachers considered that MBL experiments using a computer could decrease time spent in the experiment by accurate and fast data collection and analysis. They also thought that the reduced time could be used more effectively in the analysis of experimental data and discussion activities leading to correct concept formation as well as in the development of graphical analysis and science process skills. However, they thought that MBL experiments were ineffective in learning how to operate experiment apparatus. This study also revealed that most teachers intended to apply MBL experiments in real classrooms context right after the training course and they pointed out many obstacles in introducing MBL experiments into their classrooms such as a budget to purchase equipment, poor laboratory conditions, and few MBL experiment training opportunities. In order to apply MBL experiment into the real classrooms, further changes were suggested as follows; development of technologies to reduce unit cost of equipment for MBL experiments, production and supply of many kinds of sensors, development of MBL experiment materials, and expansion of the training program for teachers.

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

An Analysis of the Use of Media Materials in School Health Education and Related Factors in Korea (학과보건교육에서의 매체활용실태 및 영향요인 분석)

  • Kim, Young-Im;Jung, Hye-Sun;Ahn, Ji-Young;Park, Jung-Young;Park, Eun-Ok
    • Journal of the Korean Society of School Health
    • /
    • v.12 no.2
    • /
    • pp.207-215
    • /
    • 1999
  • The objectives of this study are to explain the use of media materials in school health education with other related factors in elementary, middle, and high schools in Korea. The data were collected by questionnaires from June to September in 1998. The number of subjects were 294 school nurses. The PC-SAS program was used for statistical analysis such as percent distribution, chi-squared test, spearman correlation test, and logistic regression. The use of media materials in health education has become extremely common. Unfortunately, much of the early materials were of poor production quality, reflected low levels of interest, and generally did little to enhance health education programming. A recent trend in media materials is a move away from the fact filled production to a more affective, process-oriented approach. There is an obvious need for health educators to use high-quality, polished productions in order to counteract the same levels of quality used by commercial agencies that often promote "unhealthy" lifestyles. Health educators need to be aware of the advantages and disadvantages of the various forms of media. Selecting media materials should be based on more than cost, availability, and personal preference. Selection should be based on the goal of achieving behavioral objectives formulated before the review process begins. The decision to use no media materials rather than something of dubious quality usually be the right decision. Poor-quality, outdated, or boring materials will usually have a detrimental effect on the presentation. Media materials should be viewed as vehicles to enhance learning, not products that will stand in isolation. Process of materials is an essential part of the educational process. The major results were as follows : 1. The elementary schools used the materials more frequently. But the production rate of media materials was not enough. The budget was too small for a wide use of media materials in school health education. These findings suggest that all schools have to increase the budget of health education programs. 2. Computers offer an incredibly diverse set of possibilities for use in health education, ranging from complicated statistical analysis to elementary-school-level health education games. But the use rate of this material was not high. The development of related software is essential. Health educators would be well advised to develop a basic operating knowledge of media equipment. 3. In this study, the most effective materials were films in elementary school and videotapes in middle and high school. Film tends to be a more emotive medium than videotape. The difficulties of media selection involved the small amount of extant educational materials. Media selection is a multifaceted process and should be based on a combination of sound principles. 4. The review of material use following student levels showed that the more the contents were various, the more the use rate was high. 5. Health education videotapes and overhead projectors proved the most plentiful and widest media tools. The information depicted was more likely to be current. As a means to display both text and graphic information, this instructional medium has proven to be both effective and enduring. 6. An analysis of how effective the quality of school nurse and school use of media materials shows a result that is not complete (p=0.1113). But, the budget of health education is a significant variable. The increase of the budget therefore is essential to effective use of media materials. From these results it is recommended that various media materials be developed and be wide used.

  • PDF