• Title/Summary/Keyword: data factorization

Search Result 123, Processing Time 0.027 seconds

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Music Transcription Using Non-Negative Matrix Factorization (비음수 행렬 분해 (NMF)를 이용한 악보 전사)

  • Park, Sang-Ha;Lee, Seok-Jin;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.102-110
    • /
    • 2010
  • Music transcription is extracting pitch (the height of a musical note) and rhythm (the length of a musical note) information from audio file and making a music score. In this paper, we decomposed a waveform into frequency and rhythm components using Non-Negative Matrix Factorization (NMF) and Non-Negative Sparse coding (NNSC) which are often used for source separation and data clustering. And using the subharmonic summation method, fundamental frequency is calculated from the decomposed frequency components. Therefore, the accurate pitch of each score can be estimated. The proposed method successfully performed music transcription with its results superior to those of the conventional methods which used either NMF or NNSC.

Clustering gene expression data using Non -Negative matrix factorization (Non-negative matrix factorization 을 이용한 마이크로어레이 데이터의 클러스터링)

  • Lee, Min-Young;Cho, Ji-Hoon;Lee, In-Beum
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.117-123
    • /
    • 2004
  • 마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.

  • PDF

A Block-Based Volume Rendering Algorithm Using Shear-Warp factorization (쉬어-왑 분해를 이용한 블록 기반의 볼륨 렌더링 기법)

  • 권성민;김진국;박현욱;나종범
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.433-439
    • /
    • 2000
  • Volume rendering is a powerful tool for visualizing sampled scalar values from 3D data without modeling geometric primitives to the data. The volume rendering can describe the surface-detail of a complex object. Owing to this characteristic. volume rendering has been used to visualize medical data. The size of volume data is usually too big to handle in real time. Recently, various volume rendering algorithms have been proposed in order to reduce the rendering time. However, most of the proposed algorithms are not proper for fast rendering of large non-coded volume data. In this paper, we propose a block-based fast volume rendering algorithm using a shear-warp factorization for non-coded volume data. The algorithm performs volume rendering by using the organ segmentation data as well as block-based 3D volume data, and increases the rendering speed for large non-coded volume data. The proposed algorithm is evaluated by rendering 3D X-ray CT body images and MR head images.

  • PDF

Estimable functions of less than full rank linear model (불완전계수의 선형모형에서 추정가능함수)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.333-339
    • /
    • 2013
  • This paper discusses a method for getting a basis set of estimable functions of less than full rank linear model. Since model parameters are not estimable estimable functions should be identified for making inferences proper about them. So, it suggests a method of using full rank factorization of model matrix to find estimable functions in easy way. Although they might be obtained in many different ways of using model matrix, the suggested full rank factorization technique could be one of much easier methods. It also discusses how to use projection matrix to identify estimable functions.

Study on Tag, Trust and Probability Matrix Factorization Based Social Network Recommendation

  • Liu, Zhigang;Zhong, Haidong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2082-2102
    • /
    • 2018
  • In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.

DCT/DFT Hybrid Architecture Algorithm Via Recursive Factorization (순환 행렬 분해에 의한 DCT/DFT 하이브리드 구조 알고리듬)

  • Park, Dae-Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.106-112
    • /
    • 2007
  • This paper proposes a hybrid architecture algorithm for fast computation of DCT and DFT via recursive factorization. Recursive factorization of DCT-II and DFT transform matrix leads to a similar architectural structure so that common architectural base may be used by simply adding a switching device. Linking between two transforms was derived based on matrix recursion formula. Hybrid acrchitectural design for DCT and DFT matrix decomposition were derived using the generation matrix and the trigonometric identities and relations. Data flow diagram for high-speed architecture of Cooley-Tukey type was drawn to accommodate DCT/DFT hybrid architecture. From this data flow diagram computational complexity is comparable to that of the fast DCT algorithms for moderate size of N. Further investigation is needed for multi-mode operation use of FFT architecture in other orthogonal transform computation.

  • PDF

Estimating People's Position Using Matrix Decomposition

  • Dao, Thi-Nga;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.39-46
    • /
    • 2019
  • Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.

Network intrusion detection method based on matrix factorization of their time and frequency representations

  • Chountasis, Spiros;Pappas, Dimitrios;Sklavounos, Dimitris
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.152-162
    • /
    • 2021
  • In the last few years, detection has become a powerful methodology for network protection and security. This paper presents a new detection scheme for data recorded over a computer network. This approach is applicable to the broad scientific field of information security, including intrusion detection and prevention. The proposed method employs bidimensional (time-frequency) data representations of the forms of the short-time Fourier transform, as well as the Wigner distribution. Moreover, the method applies matrix factorization using singular value decomposition and principal component analysis of the two-dimensional data representation matrices to detect intrusions. The current scheme was evaluated using numerous tests on network activities, which were recorded and presented in the KDD-NSL and UNSW-NB15 datasets. The efficiency and robustness of the technique have been experimentally proved.

Cell-Based Wavelet Compression Method for Volume Data (볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법)

  • Kim, Tae-Yeong;Sin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.