• 제목/요약/키워드: data discriminant analysis

검색결과 771건 처리시간 0.024초

지진파 스펙트럼특성과 선형판별분석을 이용한 자연지진과 인공지진 식별 (Discrimination between earthquake and explosion by using seismic spectral characteristics and linear discriminant analysis)

  • 제일영;전정수;이희일
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.13-19
    • /
    • 2003
  • Discriminant method using seismic signal was studied for discrimination of surface explosion. By means of the seismic spectral characteristics, multi-variate discriminant analysis was performed. Four single discriminant techniques - Pg/Lg, Lg1/Lg2, Pg1/Pg2, and Rg/Lg - based on seismic source theory were applied to explosion and earthquake training data sets. The Pg/Lg discriminant technique was most effective among the four techniques. Nevertheless, it could not perfectly discriminate the samples of the training data sets. In this study, a compound linear discriminant analysis was defined by using common characteristics of the training data sets for the single discriminants. The compound linear discriminant analysis was used for the single discriminant as an independent variable. From this analysis, all the samples of the training data sets were correctly discriminated, and the probability of misclassification was lowered to 0.7%.

  • PDF

A Kernel Approach to Discriminant Analysis for Binary Classification

  • 신양규
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.83-93
    • /
    • 2001
  • We investigate a kernel approach to discriminant analysis for binary classification as a machine learning point of view. Our view of the kernel approach follows support vector method which is one of the most promising techniques in the area of machine learning. As usual discriminant analysis, the kernel method can discriminate an object most likely belongs to. Moreover, it has some advantage over discriminant analysis such as data compression and computing time.

  • PDF

CART의 예측 성능:은행 및 보험 회사 데이터 사용 (The Prediction Performance of the CART Using Bank and Insurance Company Data)

  • 박정선
    • 한국정보처리학회논문지
    • /
    • 제3권6호
    • /
    • pp.1468-1472
    • /
    • 1996
  • 본 연구에서는 CART(Classification and Regression Tree)가 예측을 함에 있어 통계적인 기법인 discriminant analysis와 비교된다. 은행 데이터를 사용하는 경우 discriminant analysis가 더 나은 성능을 보여줬으며, 보험 회사 데이터를 사용한 경 우 CART가 더 나은 성능을 보여줬다. 이러한 모순된 결과가 데이터의 성격을 분석함 으로 해석된다. 본 연구에서는 두가지 모델 모두 사용된 매개변수들인 사전 확률, 데 이터, 타입 I/II오류 코스트, 검증 방법에 의해 성능의 차이를 보여줬다.

  • PDF

Results of Discriminant Analysis with Respect to Cluster Analyses Under Dimensional Reduction

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.543-553
    • /
    • 2002
  • Principal component analysis is applied to reduce p-dimensions into q-dimensions ( $q {\leq} p$). Any partition of a collection of data points with p and q variables generated by the application of six hierarchical clustering methods is re-classified by discriminant analysis. From the application of discriminant analysis through each hierarchical clustering method, correct classification ratios are obtained. The results illustrate which method is more reasonable in exploratory data analysis.

집락분석과 판별분석의 활용성연구 (Applicability of Cluster Analysis and Discriminant Analysis)

  • 채성산;황정연
    • 품질경영학회지
    • /
    • 제22권2호
    • /
    • pp.143-153
    • /
    • 1994
  • Cluster analysis is a primitive technique in which no assumptions are made concerning the data structure. And the number of groups is known a priori discriminant analysis provides an information how well N individuals are classified into their own groups. In this study, clustering, which is any partition of a collection of data points, generated by the application of eight hierarchical clustering methods was re-classified by discriminant analysis. Then correct classification ratios were obtained for the application of discriminant analysis through each clustering method and the direct application of discriminant analysis. By comparing the correct classification ratios, the applicability of cluster analysis and discriminant analysis considered.

  • PDF

국내(國內) 신속대응(迅速對應)시스템 도입업체(導入業體)의 판별분석(判別分析) 연구(硏究) (A Study of Discriminant Analysis about Korean Quick Response System Adoption)

  • 고은주
    • 패션비즈니스
    • /
    • 제4권3호
    • /
    • pp.103-114
    • /
    • 2000
  • The purpose of this study was to test the discriminant analysis model of Quick Response system and to examine the detailed relationship between each discriminant factor and Quick Response adoption. In this discriminant analysis model of Quick Response system, firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits were included as discriminant factors. Onehundred and two subjects were randomly selected for the survey study and discriminant analysis, descriptive analysis, t-test, and x square test were used for the data analysis. The results of this study were: 1. Wilks Lambda and F value support the discriminant analysis model that, taken together firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits significantly help to explain Quick Response adoption. 2. The importance of discriminant ability was, in order, firm size, the Quick Response benefits, women's wear, fashion trend, analyzer, selling time, reactor, defender and men's wear. 3. The discriminant function had the high hit ratio, so this can be well used for the classification of Quick Response adoption/nonadoption.

  • PDF

자료별 분류분석(DDA)에 의한 특징추출 (Datawise Discriminant Analysis For Feature Extraction)

  • 박명수;최진영
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.90-95
    • /
    • 2009
  • 본 논문은 선형차원감소(Linear Dimensionality Reduction)을 위해 널리 이용되고 있는 특징추출 알고리듬인 선형판별분석(Linear Discriminant Analysis)의 문제점을 해결할 수 있는 새로운 특징추출 알고리듬을 제안한다. 선형판별분석에 포함되는 평균-자료 간 거리 및 평균-평균 간의 거리에 기반한 분산행렬은 역행렬 연산, 계수의 제한 등으로 인하여 계산상의 문제와 추출되는 특징의 수가 제한되는 한계를 가지고 있다. 또한 자료의 집단이 단일 모드의 정규 분포로부터 얻어진 것으로 가정되며 그렇지 않은 경우에 대해서는 적절한 결과를 얻을 수 없다. 본 논문에서는 자료-자료 간의 거리에 기반하고 적절하게 가중치가 추가된 새로운 행렬을 정의하였으며. 이에 기반하여 특징을 추출하는 방법을 제안하였다. 그럼으로써 앞서 선형판별분석의 여러 문제를 해결하고자 시도하였다. 제안된 방법의 성능을 실험을 통해 확인하였다.

외식프랜차이즈기업 부실예측모형 예측력 평가 (Evaluating Distress Prediction Models for Food Service Franchise Industry)

  • 김시중
    • 유통과학연구
    • /
    • 제17권11호
    • /
    • pp.73-79
    • /
    • 2019
  • Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.

Development of Discriminant Analysis System by Graphical User Interface of Visual Basic

  • Lee, Yong-Kyun;Shin, Young-Jae;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.447-456
    • /
    • 2007
  • Recently, the multivariate statistical analysis has been used to analyze meaningful information for various data. In this paper, we develope the multivariate statistical analysis system combined with Fisher discriminant analysis, logistic regression, neural network, and decision tree using visual basic 6.0.

  • PDF

A Model-based Collaborative Filtering Through Regularized Discriminant Analysis Using Market Basket Data

  • Lee, Jong-Seok;Jun, Chi-Hyuck;Lee, Jae-Wook;Kim, Soo-Young
    • Management Science and Financial Engineering
    • /
    • 제12권2호
    • /
    • pp.71-85
    • /
    • 2006
  • Collaborative filtering, among other recommender systems, has been known as the most successful recommendation technique. However, it requires the user-item rating data, which may not be easily available. As an alternative, some collaborative filtering algorithms have been developed recently by utilizing the market basket data in the form of the binary user-item matrix. Viewing the recommendation scheme as a two-class classification problem, we proposed a new collaborative filtering scheme using a regularized discriminant analysis applied to the binary user-item data. The proposed discriminant model was built in terms of the major principal components and was used for predicting the probability of purchasing a particular item by an active user. The proposed scheme was illustrated with two modified real data sets and its performance was compared with the existing user-based approach in terms of the recommendation precision.