• Title/Summary/Keyword: data discriminant analysis

Search Result 771, Processing Time 0.022 seconds

Discrimination between earthquake and explosion by using seismic spectral characteristics and linear discriminant analysis (지진파 스펙트럼특성과 선형판별분석을 이용한 자연지진과 인공지진 식별)

  • 제일영;전정수;이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.13-19
    • /
    • 2003
  • Discriminant method using seismic signal was studied for discrimination of surface explosion. By means of the seismic spectral characteristics, multi-variate discriminant analysis was performed. Four single discriminant techniques - Pg/Lg, Lg1/Lg2, Pg1/Pg2, and Rg/Lg - based on seismic source theory were applied to explosion and earthquake training data sets. The Pg/Lg discriminant technique was most effective among the four techniques. Nevertheless, it could not perfectly discriminate the samples of the training data sets. In this study, a compound linear discriminant analysis was defined by using common characteristics of the training data sets for the single discriminants. The compound linear discriminant analysis was used for the single discriminant as an independent variable. From this analysis, all the samples of the training data sets were correctly discriminated, and the probability of misclassification was lowered to 0.7%.

  • PDF

A Kernel Approach to Discriminant Analysis for Binary Classification

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • We investigate a kernel approach to discriminant analysis for binary classification as a machine learning point of view. Our view of the kernel approach follows support vector method which is one of the most promising techniques in the area of machine learning. As usual discriminant analysis, the kernel method can discriminate an object most likely belongs to. Moreover, it has some advantage over discriminant analysis such as data compression and computing time.

  • PDF

The Prediction Performance of the CART Using Bank and Insurance Company Data (CART의 예측 성능:은행 및 보험 회사 데이터 사용)

  • Park, Jeong-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1468-1472
    • /
    • 1996
  • In this study, the performance of the CART(Classification and Regression Tree) is compared with that of discriminant analysis method. In most experiments using bank data, discriminant analysis shows better performance in terms of the total cost. In contrast, most experiments using insurance data show that the CART is better than discriminant analysis in terms of the total cost. The contradictory result are analysed by using the characteristics of the data sets. The performances of both the Classification and Regression Tree and discriminant analysis depend on the parameters:failure prior probability, data used, type I error, type II error cost, and validation method.

  • PDF

Results of Discriminant Analysis with Respect to Cluster Analyses Under Dimensional Reduction

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.543-553
    • /
    • 2002
  • Principal component analysis is applied to reduce p-dimensions into q-dimensions ( $q {\leq} p$). Any partition of a collection of data points with p and q variables generated by the application of six hierarchical clustering methods is re-classified by discriminant analysis. From the application of discriminant analysis through each hierarchical clustering method, correct classification ratios are obtained. The results illustrate which method is more reasonable in exploratory data analysis.

Applicability of Cluster Analysis and Discriminant Analysis (집락분석과 판별분석의 활용성연구)

  • Chae, Seong-San;Hwang, Jung-Yeon
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.143-153
    • /
    • 1994
  • Cluster analysis is a primitive technique in which no assumptions are made concerning the data structure. And the number of groups is known a priori discriminant analysis provides an information how well N individuals are classified into their own groups. In this study, clustering, which is any partition of a collection of data points, generated by the application of eight hierarchical clustering methods was re-classified by discriminant analysis. Then correct classification ratios were obtained for the application of discriminant analysis through each clustering method and the direct application of discriminant analysis. By comparing the correct classification ratios, the applicability of cluster analysis and discriminant analysis considered.

  • PDF

A Study of Discriminant Analysis about Korean Quick Response System Adoption (국내(國內) 신속대응(迅速對應)시스템 도입업체(導入業體)의 판별분석(判別分析) 연구(硏究))

  • Ko, Eun-Ju
    • Journal of Fashion Business
    • /
    • v.4 no.3
    • /
    • pp.103-114
    • /
    • 2000
  • The purpose of this study was to test the discriminant analysis model of Quick Response system and to examine the detailed relationship between each discriminant factor and Quick Response adoption. In this discriminant analysis model of Quick Response system, firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits were included as discriminant factors. Onehundred and two subjects were randomly selected for the survey study and discriminant analysis, descriptive analysis, t-test, and x square test were used for the data analysis. The results of this study were: 1. Wilks Lambda and F value support the discriminant analysis model that, taken together firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits significantly help to explain Quick Response adoption. 2. The importance of discriminant ability was, in order, firm size, the Quick Response benefits, women's wear, fashion trend, analyzer, selling time, reactor, defender and men's wear. 3. The discriminant function had the high hit ratio, so this can be well used for the classification of Quick Response adoption/nonadoption.

  • PDF

Datawise Discriminant Analysis For Feature Extraction (자료별 분류분석(DDA)에 의한 특징추출)

  • Park, Myoung-Soo;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • This paper presents a new feature extraction algorithm which can deal with the problems of linear discriminant analysis, widely used for linear dimensionality reduction. The scatter matrices included in linear discriminant analysis are defined by the distances between each datum and its class mean, and those between class means and mean of whole data. Use of these scatter matrices can cause computational problems and the limitation on the number of features. In addition, these definition assumes that the data distribution is unimodal and normal, for the cases not satisfying this assumption the appropriate features are not achieved. In this paper we define a new scatter matrix which is based on the differently weighted distances between individual data, and presents a feature extraction algorithm using this scatter matrix. With this new method. the mentioned problems of linear discriminant analysis can be avoided, and the features appropriate for discriminating data can be achieved. The performance of this new method is shown by experiments.

Evaluating Distress Prediction Models for Food Service Franchise Industry (외식프랜차이즈기업 부실예측모형 예측력 평가)

  • KIM, Si-Joong
    • Journal of Distribution Science
    • /
    • v.17 no.11
    • /
    • pp.73-79
    • /
    • 2019
  • Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.

Development of Discriminant Analysis System by Graphical User Interface of Visual Basic

  • Lee, Yong-Kyun;Shin, Young-Jae;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.447-456
    • /
    • 2007
  • Recently, the multivariate statistical analysis has been used to analyze meaningful information for various data. In this paper, we develope the multivariate statistical analysis system combined with Fisher discriminant analysis, logistic regression, neural network, and decision tree using visual basic 6.0.

  • PDF

A Model-based Collaborative Filtering Through Regularized Discriminant Analysis Using Market Basket Data

  • Lee, Jong-Seok;Jun, Chi-Hyuck;Lee, Jae-Wook;Kim, Soo-Young
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-85
    • /
    • 2006
  • Collaborative filtering, among other recommender systems, has been known as the most successful recommendation technique. However, it requires the user-item rating data, which may not be easily available. As an alternative, some collaborative filtering algorithms have been developed recently by utilizing the market basket data in the form of the binary user-item matrix. Viewing the recommendation scheme as a two-class classification problem, we proposed a new collaborative filtering scheme using a regularized discriminant analysis applied to the binary user-item data. The proposed discriminant model was built in terms of the major principal components and was used for predicting the probability of purchasing a particular item by an active user. The proposed scheme was illustrated with two modified real data sets and its performance was compared with the existing user-based approach in terms of the recommendation precision.