• Title/Summary/Keyword: data calibration

Search Result 1,813, Processing Time 0.033 seconds

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

Field Campaigns and test results for Absolute Radiometric Calibration (Absolute Radiometric Calibration을 위한 Field Campaign과 시험결과)

  • Lee, Seon-Gu;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.213-219
    • /
    • 2006
  • Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration with overpassing of satellite Orbview-3 on Cal/ Val site in Goheung and Daejeon. The performed Cal/Val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data only collected on Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance. Derived TOA is compared with DN of overpassing satellite Orbview-3 to calculate calibration coefficient of gain and offset. Also, This study proposed a proper method to prepare absolute radiometic calibration of KOMPSAT-2 by using experience of Field campaign.

  • PDF

Development of robust Calibration for Determination Sweetness of Fuji Apple fruit using Near Infrared Reflectance Spectroscopy

  • Sohn, Mi-Ryeong;Kwon, Young-Kill;Cho, Rae-Kwang
    • Near Infrared Analysis
    • /
    • v.2 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The object of this work was to investigate the influence of growing district and harvest year on calibration for sweetness (Brix) determination of Fuji apple fruit using near infrared (NIR) reflectance spectroscopy, and to develop the robust calibration across these variation. The calibration models was based on wavelength range of 1100∼2500 nm using a stepwise multiple linear regression. A calibration model by sample set of one growing district was not transferable to other growing districts. The combined calibration (data of three growing districts) predicted reasonable well against a population set drawn from all growing districts (SEP=0.69, Bias=0.075). A calibration model by sample set of one harvest year was not also transferable to other harvest years. The combined calibration (data of three harvest years) predicted well against a population set drawn from all harvest years (SEP=0.53, Bias=0.004).

Site Calibration for the Wind Turbine Performance Evaluation (풍력발전기 성능실증을 위한 단지교정 방법)

  • Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jung-Wan
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.49-57
    • /
    • 2002
  • The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several methods on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the Taekwanryung test site are presented using a one-month wind data from a reference meteorological mast and a temporal mast installed at the site of wind turbine. From this analysis, it turns out that the current location of the reference meteorological mast is wrongly determined, and the self-developed codes for the site calibration are working properly. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed.

  • PDF

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

Establishment of CTD Calibration System and Uncertainty Estimation (CTD 교정 시스템 구축 및 불확도 평가)

  • Lee, Jung-Han;Hwang, Keun-Choon;Kim, Eun-Soo;Lee, Seung-Hun
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • The quality control of ocean observations data is becoming a major issue as real-time observational data and information services have increased recently. Therefore, it is necessary for oceanographic instruments to calibrate. In this paper, we first introduce the CTD calibration system and traceability. Next, CTD calibration procedures and estimation of uncertainty of measurement are described. The expanded uncertainty (k = 2) of the temperature, pressure and conductivity are 0.$0.003^{\circ}C$, $6.0{\times}10^{-5}$ and 0.006 mS/cm respectively. Finally, the excellence of CTD calibration and its measurement capability has been proven by comparing the inter-calibration result of KIOST and Sea-Bird Electronics (SBE). CTD calibration residuals are less than ${\pm}0.0001^{\circ}C$, ${\pm}0.001$ MPa, ${\pm}0.0001$ S/m for SBE 3plus temperature sensor, SBE 19plus pressure sensor and SBE 4C conductivity sensor respectively.

Application of the New Calibration Algorithm of a Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브의 새로운 교정 알고리듬 적용)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.863-869
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. This new calibration algorithm was used for velocity data reduction from the calibration map and based on the combination of a look-up, a binary search algorithm and a geometry transformation including the translation and reflection of nodes in a calibration map. The calibration map was expanded up to the application angle, ${\pm}55^{\circ}$ of a probe. This velocity data reduction method showed a perfect performance without any kind of interpolating errors in calculating yaw and pitch angles from the calibration map. Moreover, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole.

Comparison of Calibrations using Modified SWAT Auto-calibration Tool with Various Efficiency Criteria (다양한 검증 지수를 이용한 SWAT 자동 보정 비교 평가)

  • Kang, Hyun-Woo;Ryu, Ji-Chul;Kim, Nam-Won;Kim, Seong-Joon;Engel, Bernard A.;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.19-19
    • /
    • 2011
  • The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.

  • PDF