• Title/Summary/Keyword: data analytics

Search Result 563, Processing Time 0.031 seconds

Development of Design Space Exploration for Warship using the Concept of Negative Design (네거티브 설계 개념을 이용한 함정 설계영역탐색법 개발)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.412-419
    • /
    • 2019
  • Negative space in the discipline of art defines the space around and between the subject of an image. The use of negative space is an element of artistic composition, since it is occasionally used to artistic effect as the "real" subject of an image. In painting, it is a technique that negatively touches the background of an object to be expressed, so that it gives a feeling of unique texture and silhouette by touching unnecessary parts while leaving necessary parts. As in art, negative space in a design can also be useful to identify an image of infeasible design ranges with a straightforward view. Similarity between two disciplines leads to the introduction of the negative space concept for design space exploration. A rough design space exploration using statistics and visual analytics may support more efficient decision-making, and can provide meaningful insights into the direction of early-phase system design. For this, the approach guarantees dynamic interactions between visualized information and human cognitive systems. Visual analytics is useful to summarize complex and large-scale data. It is useful for identifying feasible design spaces, as well as for avoiding infeasible spaces or highly risky spaces. This paper investigates the possible use of the negative space concept by using an application example.

Analysis of Space Use Patterns of Public Library Users through AI Cameras (AI 카메라를 활용한 공공도서관 이용자의 공간이용행태 분석 연구)

  • Gyuhwan Kim;Do-Heon Jeong
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.4
    • /
    • pp.333-351
    • /
    • 2023
  • This study investigates user behavior in library spaces through the lens of AI camera analytics. By leveraging the face recognition and tracking capabilities of AI cameras, we accurately identified the gender and age of visitors and meticulously collected video data to track their movements. Our findings revealed that female users slightly outnumbered male users and the dominant age group was individuals in their 30s. User visits peaked between Tuesday to Friday, with the highest footfall recorded between 14:00 and 15:00 pm, while visits decreased over the weekend. Most visitors utilized one or two specific spaces, frequently consulting the information desk for inquiries, checking out/returning items, or using the rest area for relaxation. The library stacks were used approximately twice as much as they were avoided. The most frequented subject areas were Philosophy(100), Religion(200), Social Sciences(300), Science(400), Technology(500), and Literature(800), with Literature(800) and Religion(200) displaying the most intersections with other areas. By categorizing users into five clusters based on space utilization patterns, we discerned varying objectives and subject interests, providing insights for future library service enhancements. Moreover, the study underscores the need to address the associated costs and privacy concerns when considering the broader application of AI camera analytics in library settings.

Social Network Analysis of Professional Groups based on Co-author and Review Networks (전문가 그룹의 소셜 네트워크 분석: 국내 학술지 공저자 및 심사자 네트워크를 중심으로)

  • Kim, Injai;Choi, Jaewon;Kim, Kihwan;Min, Geumyoung
    • Journal of Information Technology Services
    • /
    • v.13 no.1
    • /
    • pp.181-196
    • /
    • 2014
  • Many studies have been studied in the Information Technology (IT) area such as Information Systems, Business, Industrial Engineering, Computer Science, Data Analytics and so on. Although various fields for IT exist, searching experts and reviewers in IT journals are subjective. The related journals have made efforts to assign experts for the qualified review. This study conducted developing the framework for understanding and evaluating the experts among co-authors and reviewers through social network analysis. To explore the findings, we collected data of the co-authored network and the reviewer network of the Korea Society of IT Services Journal. Totally, 545 authors for submissions and 314 co-authors were used for analyzing the co-authored network. To analyze the network, we divided two networks as a network for 545 papers and a network of 316 papers excluded 229 single authored-papers. In the findings, we found out various researchers published their papers with collaborations. Also, authors who have high scores of centrality can be said as experts for specific fields. In addition, we analyzed 358 data of reviewers from 2005 to 2011. About 50 reviewers have reviewed the submitted papers based on their expertise since 2005. Peculiarly, the expertise and the qualified review in Korea Society of IT Services Journal were identified in that almost reviewers do not review various papers at a time based on low degree measures and network density.

Design and Implementation of Big Data Analytics Framework for Disaster Risk Assessment (빅데이터 기반 재난 재해 위험도 분석 프레임워크 설계 및 구현)

  • Chai, Su-seong;Jang, Sun Yeon;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.771-777
    • /
    • 2018
  • This study proposes a big data based risk analysis framework to analyze more comprehensive disaster risk and vulnerability. We introduce a distributed and parallel framework that allows large volumes of data to be processed in a short time by using open-source disaster risk assessment tool. A performance analysis of the proposed system presents that it achieves a more faster processing time than that of the existing system and it will be possible to respond promptly to precise prediction and contribute to providing guideline to disaster countermeasures. Proposed system is able to support accurate risk prediction and mitigate severe damage, therefore will be crucial to giving decision makers or experts to prepare for emergency or disaster situation, and minimizing large scale damage to a region.

Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder (오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구)

  • Lee, Hyun-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1115-1121
    • /
    • 2018
  • In this paper, we have studied a data analysis method by deep learning to predict learning achievements based on accumulated data in cyber university learning management system. By predicting learner's academic achievement, it can be used as a tool to enhance learner's learning and improve the quality of education. In order to improve the accuracy of prediction of learning achievements, the autoencoder based attendance prediction method is developed to improve the prediction performance and deep learning algorithm with ongoing evaluation metrics and predicted attendance are used to predict the final score. In order to verify the prediction results of the proposed method, the final grade was predicted by using the evaluation factor attendance data of the learning process. The experimental result showed that we can predict the learning achievements in the middle of semester.

A Study on the Relationship between Class Similarity and the Performance of Hierarchical Classification Method in a Text Document Classification Problem (텍스트 문서 분류에서 범주간 유사도와 계층적 분류 방법의 성과 관계 연구)

  • Jang, Soojung;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.77-93
    • /
    • 2020
  • The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.

Study of deduction flow map on conversation toward the Embodied conversational agents in the Mobile Environment (모바일 상황에서 대화형 에이전트와 사용자의 대화 흐름도 도출 연구)

  • Choi, Yoo-Jung;Jo, Yoon-Ju;Park, Su-E
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.178-183
    • /
    • 2008
  • The goal of this study is finding flow-map in conversation what is going on user and embodied conversational agent by analysing that conversation. Specifically, this study not only find elements of conversation, but also draw out patterns of conversation can be exist for dialogue ability between user and Embodied conversational agent. To do this, we collect data through in-depth one to one interview, and then we analysis collected data to try to find out element of user-agent conversation based on qualitative research refer to the theory of conversation analytics and type of conversation. As a result, six flow map is deducted Especially, the irregular conversation is hard to find in human-human conversation, and the frequency is the most in data. In addition, when elements of interruption came out, be hostile to partner or correct the press conversation. This study can have positive effect to embodied conversation agent developer, user and service offerer because this study find the type of conversation through analysis that between embodied conversational agent and user.

  • PDF

A Future Prospect for Change in each Step of Six Sigma DMAIC under the 4th Industrial Revolution (4차 산업혁명 하에서의 6 시그마 DMAIC 단계별 변화에 대한 전망)

  • Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Purpose: This paper provides an idea on the future prospect for change in steps of the six sigma DMAIC project under the environment of the 4th industrial revolution. Methods: First, the purpose and activities required in each step of DMAIC are reviewed. Next, activities are reviewed together with tools and techniques, considering the purpose and the environmental changes of the 4th Industrial Revolution. Finally, the best approaches for achieving the purpose are prospected to get an idea on future change. Results: The purpose of each phase of DMAIC is expected to remain unchanged. But activities, techniques, or methods will be replaced with more effective and efficient ones. Also, many activities may possibly be executed by a system instead of people like BB, GB or team members. Moreover, DMAIC may not be a project any more but a routine job of the system in the future. Conclusion: Under the environment of the 4th industrial revolution, many activities including analyzing various types of data and extracting valuable information, will be executed by a system with proper algorithms instead of people. And six sigma improvement projects may be intrinsic parts of the system and may not exist as separate projects any more.

Collaborative Filtering for Credit Card Recommendation based on Multiple User Profiles (신용카드 추천을 위한 다중 프로파일 기반 협업필터링)

  • Lee, Won Cheol;Yoon, Hyoup Sang;Jeong, Seok Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.154-163
    • /
    • 2017
  • Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The 'cold-start' problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.

A Study on Application of Machine Learning Algorithms to Visitor Marketing in Sports Stadium (기계학습 알고리즘을 사용한 스포츠 경기장 방문객 마케팅 적용 방안)

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, we analyze the big data of visitors who are looking for a sports stadium in marketing field and conduct research to provide customized marketing service to consumers. For this purpose, we intend to derive a similar visitor group by using the K-means clustering method. Also, we will use the K-nearest neighbors method to predict the store of interest for new visitors. As a result of the experiment, it was possible to provide a marketing service suitable for each group attribute by deriving a group of similar visitors through the above two algorithms, and it was possible to recommend products and events for new visitors.