• 제목/요약/키워드: data analytics

검색결과 563건 처리시간 0.024초

Impact of Big Data Analytics on Indian E-Tailing from SCM to TCS

  • Avinash BM;Divakar GM;Rajasekhara Mouly Potluri;Megha B
    • 유통과학연구
    • /
    • 제22권8호
    • /
    • pp.65-76
    • /
    • 2024
  • Purpose: The study aims to recognize the relationship between big data analytics capabilities, big data analytics process, and perceived business performance from supply chain management to total customer satisfaction. Research design, data and methodology: The study followed a quantitative approach with a descriptive design. The data was collected from leading e-commerce companies in India using a structured questionnaire, and the data was coded and decoded using MS Excel, SPSS, and R language. It was further tested using Cronbach's alpha, KMO, and Bartlett's test for reliability and internal consistency. Results: The results showed that the big data analytics process acts as a robust mediator between big data analytics capabilities and perceived business performance. The 'direct, indirect and total effect of the model' and 'PLS-SEM model' showed that the big data analytics process directly impacts business performance. Conclusions: A complete indirect relationship exists between big data analytics capabilities and perceived business performance through the big data analytics process. The research contributesto e-commerce companies' understanding of the importance of big data analytics capabilities and processes.

Data Visualization and Visual Data Analytics in ITSM

  • Donia Y. Badawood
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.68-76
    • /
    • 2023
  • Nowadays, the power of data analytics in general and visual data analytics, in particular, have been proven to be an important area that would help development in any domain. Many well-known IT services best practices have touched on the importance of data analytics and visualization and what it can offer to information technology service management. Yet, little research exists that summarises what is already there and what can be done to utilise further the power of data analytics and visualization in this domain. This paper is divided into two main parts. First, a number of IT service management tools have been summarised with a focus on the data analytics and visualization features in each of them. Second, interviews with five senior IT managers have been conducted to further understand the usage of these features in their organisations and the barriers to fully benefit from them. It was found that the main barriers include a lack of good understanding of some visualization design principles, poor data quality, and limited application of the technology and shortage in data analytics and visualization expertise.

Unlocking Digital Transformation: The Pivotal Role of Data Analytics and Business Intelligence Strategies

  • Edwin Omol;Lucy Mburu;Paul Abuonji
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제14권3호
    • /
    • pp.77-91
    • /
    • 2024
  • This article aims to comprehensively analyze the crucial role played by data analytics and business intelligence (BI) strategies in propelling digital transformation within diverse industries. Through an extensive literature review and examination of real-world case studies, the study employs a systematic analysis of scholarly works and industry reports. This approach provides a panoramic view of how organizations utilize data-driven insights for competitive advantages, improved customer experiences, and fostering innovation. The findings underscore the pivotal significance of data analytics and BI strategies in influencing strategic decision-making, enhancing operational efficiency, and ensuring long-term sustainability across various industries. The study stands out in its originality by offering a unique synthesis of insights derived from scholarly works and real-world case studies, contributing to a holistic understanding of the transformative impact of data analytics and BI on contemporary business practices. While the study provides valuable insights, limitations include the scope of available literature and case studies. The implications call for further research to explore emerging trends and evolving challenges in the dynamic landscape of data analytics and BI. The practical implications highlight the tangible benefits organizations can derive from integrating data analytics and BI strategies, emphasizing their role in shaping strategic decisions and fostering operational efficiency. In a broader context, the study delves into the social implications of the symbiotic relationship between data analytics, BI, and digital transformation. It explores how these strategies impact broader societal and economic aspects, influencing innovation and sustainability.

마케팅 관점으로 본 빅 데이터 분석 사례연구 : 은행업을 중심으로 (Big Data Analytics Case Study from the Marketing Perspective : Emphasis on Banking Industry)

  • 박성수;이건창
    • 한국IT서비스학회지
    • /
    • 제17권2호
    • /
    • pp.207-218
    • /
    • 2018
  • Recently, it becomes a big trend in the banking industry to apply a big data analytics technique to extract essential knowledge from their customer database. Such a trend is based on the capability to analyze the big data with powerful analytics software and recognize the value of big data analysis results. However, there exits still a need for more systematic theory and mechanism about how to adopt a big data analytics approach in the banking industry. Especially, there is no study proposing a practical case study in which big data analytics is successfully accomplished from the marketing perspective. Therefore, this study aims to analyze a target marketing case in the banking industry from the view of big data analytics. Target database is a big data in which about 3.5 million customers and their transaction records have been stored for 3 years. Practical implications are derived from the marketing perspective. We address detailed processes and related field test results. It proved critical for the big data analysts to consider a sense of Veracity and Value, in addition to traditional Big Data's 3V (Volume, Velocity, and Variety), so that more significant business meanings may be extracted from the big data results.

The Adoption of Big Data to Achieve Firm Performance of Global Logistic Companies in Thailand

  • KITCHAROEN, Krisana
    • 유통과학연구
    • /
    • 제21권1호
    • /
    • pp.53-63
    • /
    • 2023
  • Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.

스마트공장을 위한 빅데이터 애널리틱스 플랫폼 아키텍쳐 개발 (Developing a Big Data Analytics Platform Architecture for Smart Factory)

  • 신승준;우정엽;서원철
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1516-1529
    • /
    • 2016
  • While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.

국내 HR Analytics 연구에서 활용한 데이터와 분석방법에 대한 체계적문헌고찰 (A Systematic Literature Review of Data and Analysis Methods Used in HR Analytics Research)

  • 정재삼;조예인;양하영;진명화;박효성;이재영
    • 한국콘텐츠학회논문지
    • /
    • 제22권9호
    • /
    • pp.614-627
    • /
    • 2022
  • 본 연구는 국내 HR Analytics 연구에서 활용한 데이터와 분석방법을 탐색하여 향후 연구를 위한 기초자료를 제공하고 HR Analytics 연구 현황을 밝히는 것을 목적으로 한다. 이를 위하여 체계적 문헌고찰 방법을 활용하여 국내 KCI 등재 학술지에 수록된 실증연구 논문 78편을 선정하였고 해당 논문을 근로자 생애주기에 따라 분류하여 검토하였다. 문헌고찰 결과 다음과 같은 결과를 얻을 수 있었다. 첫째, 근로자 생애주기에 따른 HR Analytics 연구 동향을 살펴본 결과, 선행연구에서는 구성원의 유지(retention)와 관련한 연구가 가장 많았고 성과 관리에 대한 연구가 그 뒤를 이었다. 둘째, HR Analytics 연구에서 사용한 데이터를 살펴본 결과 각 연구는 해당 연구문제에 따라 다양한 데이터(정형, 비정형)를 활용하고 있었으며 데이터 출처 또한 조직내부 시스템부터 국가 통계 DB까지 매우 다양한 것으로 확인하였다. 셋째, 문헌고찰 결과 국내 HR Analytics 연구는 기술적, 진단적 분석이 가장 많으며, 예측 및 처방과 관련한 연구는 미미한 수준임을 알 수 있었다.

비주얼 애널리틱스 연구 소개 (Introduction to Visual Analytics Research)

  • 오유상;이충기;오주영;양지현;곽희나;문성우;박소환;고성안
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권5호
    • /
    • pp.27-36
    • /
    • 2016
  • 컴퓨터 그래픽스 (Computer Graphics) 및 인간-컴퓨터 상호작용 (Human-Computer Interaction, HCI) 기술을 기반으로 효과적인 데이터 분석을위한 가시화 툴 (Tool) 기술이 크게 발전 하였다. 해당 기술 분야는 Visual Analytics (비주얼애널리틱스)라는 연구 분야로 발전하여 2006년 첫 심포지엄이 열린 이래, 다양한 데이터 마이닝 (Data Mining), 상호작용 (Interaction) 기술이 정보 가시화 (Information Visualization) 기술에 접목하여 사용자 중심의 빅 데이터분석 및 의사 결정 시스템을 연구하는 분야로 확장 되었다. 그러나 국내에서는 아직 해당 연구 분야에 대하여 제대로 알려지지 않아, 국내 컴퓨터 그래픽스 및 HCI 기술 연구에 비하여, 가시화 기술을 통한 빅데이터 분석 및 의사결정을 지원하는 시스템을 설계 하는 기술이 뒤쳐지는 편이다. 따라서 본 논문에서는 비주얼 애널리틱스 연구의 기본 철학을 살펴 보고, IEEE Symposium on Visual Analytics Science and Technology (VAST) 학회에 2015년 출판된 논문으로 사용된 데이터 및 가시화 기술 분석 서베이를 진행함으로써 국내 컴퓨터 그래픽스 연구자들의 해당 분야에 대한 이해를 돕고자 한다.

데이터 리터러시와 데이터 분석 성숙도의 관계에서 조직문화의 조절효과 (Data Literacy, Organizational Culture, and Data Analytics Maturity: Moderating Effect of Organizational Culture)

  • 박종남;조예은
    • 정보화정책
    • /
    • 제28권1호
    • /
    • pp.43-63
    • /
    • 2021
  • 최근 빠르게 변화하는 내·외부 환경에 대응하기 위해 데이터 분석 역량이 강조되고 있다. 본 연구는 조직문화가 데이터 기반 성과창출의 결정적인 역할을 한다는 점에 주목하여 조직문화 유형에 따른 데이터 리터러시와 데이터 분석 성숙도의 관계를 실증적으로 규명하였다. 첫 번째 분석 주제인 데이터 리터러시와 데이터 분석 활용도의 관계에서는 조직 구성원의 데이터 리터러시가 높을수록 조직의 데이터 분석 성숙도가 높다고 인식하고 있었다. 두 번째 주제인 조직문화와 데이터 분석 활용도의 관계를 살펴보면, 조직 구성원이 조직의 문화를 관계지향 문화와 혁신지향 문화라고 인식할수록 데이터 분석 성숙도가 높아진다고 인식하고 있다. 세 번째 분석인 데이터 리터러시와 데이터 분석 성숙도의 관계성은 관계지향 문화와 위계지향 문화에 의해서 달라짐을 발견하였다. 관계지향 문화는 데이터 리터러시가 데이터 분석 성숙도 인식에 미치는 영향에 대한 상승효과로 나타났으나, 위계지향 문화는 완충효과가 있는 것으로 나타났다.

저자동시인용분석에 의한 Business Analytics 분야의 지적 구조 분석: 2002 ~ 2020 (The Intellectual Structure of Business Analytics by Author Co-citation Analysis : 2002 ~ 2020)

  • 임혜정;서창교
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.21-44
    • /
    • 2021
  • Purpose The opportunities and approaches to big data have grown in various ways in the digital era. Business analytics is nowadays an inevitable strategy for organizations to earn a competitive advantage in order to survive in the challenged environments. The purpose of this study is to analyze the intellectual structure of business analytics literature to have a better insight for the organizations to the field. Design/methodology/approach This research analyzed with the data extracted from the database Web of Science. Total of 427 documents and 23,760 references are inserted into the analysis program CiteSpace. Author co-citation analysis is used to analyze the intellectual structure of the business analytics. We performed clustering analysis, burst detection and timeline analysis with the data. Findings We identified seven sub- areas of business analytics field. The top four sub-areas are "Big Data Analytics Infrastructure", "Performance Management System", "Interactive Exploration", and "Supply Chain Management". We also identified the top 5 references with the strongest citation bursts including Trkman et al.(2010) and Davenport(2006). Through timeline analysis we interpret the clusters that are expected to be the trend subjects in the future. Lastly, limitation and further research suggestion are discussed as concluding remarks.