• 제목/요약/키워드: dash panel

검색결과 21건 처리시간 0.034초

승용차 대시부의 구조 방사 효율 저감 방법 제안 (A Suggestion of Method to reduce the Radiation Efficiency of Dash Panel of a Passenger Car)

  • 김영기;강연준;안옥균;기지현;최윤봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.268-272
    • /
    • 2002
  • A study to determine the structure-borne noise radiated by a dash panel of a real car is performed by using the finite element method (FEM) and the boundary element method (BEM). The radiation efficiency is used to estimate the structure-borne noise radiated by a dash panel. The curved surfaces of a dash panel change the radiation efficiency. Experimental results of radiation efficiency of a simple rectangular plate and a dash panel show good agreements with the simulation results.

  • PDF

승용차 대시부의 구조 방사 효율 저감 방법 제안 (A Suggestion of Method to reduce the Radiation Efficiency of Dash Panel of a Passenger Car)

  • Kim, Young-Ki;Kang, Yeon-June;Ahn, Ok-Kyun;Ki, Ji-Hyeon;Park, Yoon-Bong
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.332.1-332
    • /
    • 2002
  • The study was performed as reduction method using finite and boundary element analysis on structure-borne noise radiated by dash panel of a real car. The radiation efficiency is used to estimate sound noise of dash panel. Curvature and edges of dash panel have effect on radiation efficiency. The simulation results of dash panel was ensured by comparison between experimental results and simulation results of a simple rectangular plate. (omitted)

  • PDF

마그네슘 합금 AZ31B 판재를 활용한 활용한 차체 Dash Panel 온간 성형 부품 개발 (Development of Automotive Dash Panel Parts Using Warm Drawing of Magnesium Alloy AZ31B)

  • 박동환;윤재정;탁윤학;이춘우
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.248-255
    • /
    • 2015
  • The warm drawing of magnesium alloy AZ31B sheet is affected by temperature because tensile elongation is changed due to the elevated temperature. In the current study, the effect of temperature was investigated for an automotive dash panel part by both experimental and FE analysis. Tensile tests were performed to obtain mechanical properties for various temperatures. AZ31B alloy sheet shows increased total elongation with increasing deformation temperature in the range of 200 to 300℃. The heating channel inserted into the die was used to regulate and to obtain an optimal temperature. A temperature controller was constructed to reduce temperature variation. Warm drawing of magnesium alloy AZ31B was performed to produce the desired shape of the lightweight automotive dash panel. The simulated results showed good agreement with the experimental results.

방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자별 영향도분석 (Evaluation of design variables to improve noise radiation and insulation performances of a dash panel component of an automotive vehicle)

  • 유지우;채기상;박철민;서진관;이기용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.526-531
    • /
    • 2011
  • A dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train. Meanwhile, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it seems important to provide an optimal design scheme incorporating sound packages such as dash isolation pad and carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. The system taken into account in this paper is a dash panel component of a sedan, which includes A pillar, front side member, dash panel and the corresponding sound packages. Design variables such as panel thickness and sound package layers are investigated how they are related for the better radiation performance (i.e. structure-borne) and sound transmission loss (i.e. air borne).

  • PDF

대시 패널의 투과손실 측정 및 예측 (The Measurement and Prediction of Transmission loss through Dash Panel)

  • 김정수;강연준
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.191-194
    • /
    • 2004
  • This study Is an measurement and prediction of transmission loss through dash panel with multi-path in a vehicle. Measurement results of transmission loss are decided by sound power measured using the sound intensity method under locating a sound source in the anechoic room and reverberant room, respectively. Prediction one is decided by multi-path analysis of dash panel composed by a various part of materials and complicated shape. Finally, two results show a great agreement between measured and predicted transmission loss.

  • PDF

대시 패널의 투과손실 측정 및 예측 (The Measurement and Prediction of Transmission loss through Dash Panel)

  • 김정수;강연준;김윤재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.122-125
    • /
    • 2005
  • This study is an measurement and prediction of transmission loss through dash panel with multi-path in a vehicle. Measurement results of transmission loss are derided by sound power measured using the sound intensity method under locating a sound source in the anechoic room and reverberant room, respectively. Prediction one is decided by multi-path analysis of dash panel composed by a various part of materials and complicated shape. Finally, two results show a great agreement between measured and predicted transmission loss.

  • PDF

자동차 대시 구조의 소음진동 성능개선을 위한 단순 상사구조물의 소음방사성능 연구 (Study on Acoustical Radiation from Simplified Systems of a Dash Structure for NVH Performance)

  • 임차섭;유지우;박철민;조진호
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.931-939
    • /
    • 2010
  • A dash panel plays an important role to protect noise as well as heat. Meanwhile, it is also the most important path that transfers energy to the interior cavity, so that some of noises are transferred via air and its structural vibration becomes a major issue. From the viewpoint of NVH performance, simplified structures analogues to the dash wall are dealt with. Stiffeners, damping sheets and sound packages attached to a flat panel are taken into account as design variables. Structural radiation characteristics(thus, structure borne) such as radiation efficiency and radiation power are mainly discussed. For the case when an excitation is applied on a frame that surrounds the panel, it is shown that the radiation efficiency increases by attaching a stiffener to the panel, which is similarly found from the case when a panel is directly excited. It seems more effective to attach damping sheets along the boundary area of the panel rather than its middle area. The radiation efficiency of sound packages may make a dominant contribution to transmission loss as well as sound radiation. Experimental work was carried out to verify the results based on the simulation study.

방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자 별 영향도 분석 (Evaluation of Design Variables to Improve Sound Radiation and Transmission Loss Performances of a Dash Panel Component of an Automotive Vehicle)

  • 유지우;채기상;박철민;서진관;이기용
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.22-28
    • /
    • 2012
  • While a dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it is important to provide optimal design schemes incorporating sound packages such as a dash isolation pad and a floor carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. A novel FE-SEA hybrid simulation model is used for this study. The system taken into account is a dash panel component of a sedan vehicle, which includes front pillars, front side members, a dash panel and corresponding sound packages. Design variables such as panel thicknesses and sound packages are investigated how they are related to two main NVH indexes, sound radiation power(i.e. structure-borne) and sound transmission loss(i.e. air borne). In the viewpoint of obtaining better NVH performance, it is shown that these two indexes do not always result in same tendencies of improvement, which suggests that they should be dealt with independently and are also dependent on frequency regions.

시험에 의한 대시시스템의 소음특성 규명 및 시뮬레이션 신뢰성 연구 (Experimental study and numerical simulation on a dash system for noise reduction of a sedan vehicle)

  • 유지우;채기상;조진호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.667-671
    • /
    • 2012
  • Low frequency noises (up to about 200 Hz) mainly occur due to particular modes, resulting in booming noises, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~ 1 kHz, as the number of modes rapidly increase, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated. Energy Transmission loss (i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transfers both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet or sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

  • PDF