• 제목/요약/키워드: damping properties

검색결과 700건 처리시간 0.023초

MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공;양보석;하종용;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.464-467
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and excitation tests were performed to investigate the dynamic properties of squeeze mode type MR mount. Responses of the mount were compared in proportion to the applied magnetic field strength. The experimental results show that the mount can effectively reduce vibration amplitude in a wide frequency range by changing the applied magnetic field strength.

  • PDF

Performances of non-dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.91-98
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포 (Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.362.1-362
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material rented structures, Golla-Hughes-McTavish(GHM) model is used and some dominant modes are chosen for consideration. (omitted)

  • PDF

Nonlinear dynamic properties of dynamic shear modulus ratio and damping ratio of clay in the starting area of Xiong'an New Area

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.97-115
    • /
    • 2024
  • In this paper, a database consisting of the dynamic shear modulus ratio and damping ratio test data of clay obtained from 406 groups of triaxial tests is constructed with the starting area of Xiong'an New Area as the research background. The aim is to study the nonlinear dynamic properties of clay in this area under cyclic loading. The study found that the effective confining pressure and plasticity index have certain influences on the dynamic shear modulus ratio and damping ratio of clay in this area. Through data analysis, it was found that there was a certain correlation between effective confining pressure and plasticity index and dynamic shear modulus ratio and damping ratio, with fitting degree values greater than 0.1263 for both. However, other physical indices such as the void ratio, natural density, water content and specific gravity have only a small effect on the dynamic shear modulus ratio and the damping ratio, with fitting degree values of less than 0.1 for all of them. This indicates that it is important to consider the influence of effective confining pressure and plasticity index when studying the nonlinear dynamic properties of clays in this area. Based on the above, prediction models for the dynamic shear modulus ratio and damping ratio in this area were constructed separately. The results showed that the model that considered the combined effect of effective confining pressure and plasticity index performed best. The predicted dynamic shear modulus ratio and damping ratio closely matched the actual curves, with approximately 88% of the data falling within ±1.3 times the measured dynamic shear modulus ratio and approximately 85.1% of the data falling within ±1.3 times the measured damping ratio. In contrast, the prediction models that considered only a single influence deviated from the actual values, particularly the model that considered only the plasticity index, which predicted the dynamic shear modulus ratio and the damping ratio within a small distribution range close to the average of the test values. When compared with existing prediction models, it was found that the predicted dynamic shear modulus ratio in this paper was slightly higher, which was due to the overall hardness of the clay in this area, leading to a slightly higher determination of the dynamic shear modulus ratio by the prediction model. Finally, for the dynamic shear modulus ratio and damping ratio of the engineering site in the starting area of Xiong'an New Area, we confirm that the prediction formulas established in this paper have high reliability and provide the applicable range of the prediction model.

Fe-Mn 제진금속을 적용한 교량용 교좌장치 (Application of Fe-Mn Damping Alloy for Divided Spherical Bearing in Bridge)

  • 한동운;김태훈;백진현;김정철;백승한;유문식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1024-1028
    • /
    • 2006
  • The Fe-Mn damping Alloys which combine a high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving fatigue, noise and vibration. This study is aimed at finding its applicability to divided spherical bearing in bridge. The results obtained are summarized as follows : 1) The specific damping capacity of the Fe-Mn damping alloy is superior to that of SM490B. 2) The divided spherical bearing manufactured Fe-Mn damping alloy passes the load test to confirm applicability of that in bridge.

  • PDF

Stress-related energy dissipation and damping model of concrete considering moisture content

  • Liu, Baodong;Zhang, Pengyuan;Lyu, Wenjuan
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.423-431
    • /
    • 2022
  • Although the influence of moisture content on the mechanical properties of concrete has been studied for a long time, research related to its influence on the damping and energy dissipation property of concrete structure is still very limited. In this paper, the relationship between damping property and moisture content of concrete using cyclic uniaxial compression is firstly presented, and the mechanism of the influence of moisture content on concrete damping and energy dissipation capacity is analyzed. Based on the experimental research, moisture-related damping and energy dissipation model is proposed. Results show that the dissipated energy of concrete and loss factor increase as the moisture content increasing. The energy dissipation coefficient reflecting the influence of stress level of concrete under cyclic load, decreases first and then increases as the moisture content increasing. The mechanism of moisture-related energy dissipation behavior can be divided into the reactive force of water, the development of the internal micro cracks and the pore water pressure. Finally, the proposed moisture-related damping and energy dissipation model are verified.

모래의 입도가 동적 특성에 미치는 영향 (Effects of Gradation on Dynamic properties of Sands)

  • 송정락;김수일
    • 한국지반공학회지:지반
    • /
    • 제3권2호
    • /
    • pp.7-16
    • /
    • 1987
  • 흙의 동적 특성은 공극비, 구속압력, 입도 등의 여러가지 요인에 의해서 변화한다. 본 연구에서는 모래의 입도가 그 동적 특성에 미치는 영향을 구속압력과 공극비의 영향과 함께 실험적으로 살펴 보았다. 실험 결과, 전단탄성계수(Shear Modulus)와 감쇠비 (Damping Ratio)는 공극비가 감소 함에 따라, 그리고 구속압력이 증가함에 따라 각카 증가 및 감소하였다. 한펀, 실트 크기의 석영분말을 섞어 입도를 변화시켰을 때, 시료의 전단탄성계수와 감쇠비는 석영 분말의 함유량이 증가함에 따라 각각 감소 및 증가하였다. 여기서는 이 현상을 "유효 접촉수"와 "사공간"의 개념을 써서 미시적으로 살펴보았다. 개념을 써서 미시적으로 살펴보았다.

  • PDF

온도변화에 따른 플라스틱의 진동감쇠특성 (Damping Properties of Plastic with Temperature Variation)

  • 신수현;정성수;이용봉;이두희;남효덕
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.213-218
    • /
    • 2005
  • It is well known that the loss factor and Young's modulus are fundamental mechanical properties of materials. Recently, the use of complex plastics is increasing for vibration proof. In this study, we evaluated two mechanical values of polycarbonate and acrylonitrile butadiene styrene by using two different standard test methods of ASTM E 756 and ISO 6721. Because damping properties of material generally depend on temperature, test specimen‘s temperature were controlled in the temperature range between - $10^{\circ}C\;and\;60^{\circ}C$. The results shown that the loss factor of polycarbonate gradually increased as increasing temperature, while the Young's modulus decreased. However, the loss factor and the Young's modulus of acrylonitrile butadiene styrene are varied somewhat at $60^{\circ}C$.

철도교량 동특성 분석을 위한 궤도형식별 모달 테스트 (Modal Tests of Railway Bridges considering the Type of Track Structures)

  • 김성일;유진영;문제우;홍성모;김종태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.101-108
    • /
    • 2008
  • The dynamic behavior of railway bridges originates from dynamic properties of various spans and structural types. As a result, the exact estimation of dynamic properties of the railway bridge can produce the exact estimations of dynamic performances of the railway bridge. The damping ratio affects the dynamic reponses of the railway bridge in the vicinity of the critical speed seriously. Eurocode, National Annex of each European country and Japan have their own specification for the damping ratio for the estimation of dynamic performance of railway bridges. In our case, the specification for Honam high speed railways follows the Eurocode. In the present study, for the verification and regulation of the damping ratio and investigation of various dynamic properties, modal tests of various structural types are performed. In addition, for the investigation of effects of track structures on the dynamic property of the bridge, ballast track and concrete track are installed and tested.

  • PDF

풍응답계측시 RD법에 의한 고층건물의 동적특성의 진폭의존성 (Amplitude Dependent Dynamic Properties of Tall Building under the Strong Wind)

  • 윤성원
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.61-68
    • /
    • 2004
  • 풍향풍속계와 구조 모니터링 시스템을 설치하여 강풍과 거물의 동적 특성을 계측하였다. 계측건물은 속초의 산기슭에 위치하고 있다. 감쇠율과 고유진동수의 진폭 의존성을 분석하였다. 감쇠율의 진폭의존성은 9%로서, 가속도진폭이 증가함에 따라서 감쇠율이 명료하게 증가하는 경향을 보였다. 계측데이터에서 얻은 동적 특성의 경향은 사용성 평가시 건물의 동적 특성을 평가하는데 유용하게 사용되리라 기대된다.

  • PDF