• Title/Summary/Keyword: damping parameter

Search Result 477, Processing Time 0.026 seconds

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Experiments on influence of foundation mass on dynamic characteristic of structures

  • Pham, Trung D.;Hoang, Hoa P.;Nguyen, Phuoc T.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • Recently, a new foundation model called "Dynamic foundation model" was proposed for the dynamic analysis of structures on the foundation. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameter of foundation during vibration. However, the relationship of foundation property parameters with the experimental parameter of the influence of foundation mass also has not been established in previous research. Hence, the purpose of the paper presents a simple experimental model in order to establish relationships between foundation properties such as stiffness, depth of foundation and experimental parameter of the influence of foundation mass. The simple experimental model is described by a steel plate connected with solid rubber layer as a single degree of freedom system including an elastic spring connected with lumped mass. Based on natural circular frequencies of the experimental models determined from FFT analysis plots of the time history of acceleration data, the experimental parameter of the influence of foundation mass is obtained and the above relationships are also discussed.

A Parameter Estimation of Time Signal and Analysis of Low Frequency Oscillation in Power Systems (시간영역에서 파라미터 추정과 전력계통의 저주파진동 해석)

  • Shim Kwan-Shik;Nam Hae-Kon;Kim Yong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.122-132
    • /
    • 2005
  • This paper presents a novel approach based on Prony method to analysis of small signal stability in power system. Prony method is a valuable tool in identifying transfer function and estimating the modal parameter of power system oscillation from measured or computed discrete time signal. This paper define the relative residue of time signal and propose the condition to select low frequency oscillation in each generator. This paper describes the application results of proposed algorithm with respect to KEPCO systems. Simulation results show that the proposed algorithm can be used as another tools of power systems analysis.

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

Parameter Estimation of Shallow Arch Using Quantum-Inspired Evolution Algorithm (양자진화 알고리즘을 이용한 얕은 아치의 파라미터 추정)

  • Shon, Sudeok;Ha, Junhong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.95-102
    • /
    • 2020
  • The structural design of arch roofs or bridges requires the analysis of their unstable behaviors depending on certain parameters defined in the arch shape. Their maintenance should estimate the parameters from observed data. However, since the critical parameters exist in the equilibrium paths of the arch, and a small change in such the parameters causes a significant change in their behaviors. Thus, estimation to find the critical ones should be carried out using a global search algorithm. In this paper we study the parameter estimation for a shallow arch by a quantum-inspired evolution algorithm. A cost functional to estimate the system parameters included in the arch consists of the difference between the observed signal and the estimated signal of the arch system. The design variables are shape, external load and damping constant in the arch system. We provide theoretical and numerical examples for estimation of the parameters from both contaminated data and pure data.

Robust Vibration Control for a Building with Parameter Uncertainty (파라미터 불확실성을 고려한 건물의 견실 진동 제어)

  • 최재원;김신종;이만형
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation (고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정)

  • 이건명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

Design Parameter Identification Using Transfer Function of Liquid Column Vibration Absorber (LCVA) (전달함수를 이용한 LCVA의 설계변수 분석)

  • Lee, Sung-Kyung;Min, Kyung-Won;Chung, Hee-San
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 2009
  • The purpose of this study is to verify the transfer function of input acceleration and output control force by linearizing a velocity-dependent damping term of Liquid Column Vibration Absorber (LCVA). Analytical and experimental research is conducted to identify natural frequency, damping ratio and participated mass ratio of LCVA with various section ratios of vertical and horizontal areas. Findings obtained experimentally by the shaking table test are compared with analytical findings using optimization technique with constraints. The results indicate that the level of liquid and section ratio of LCVA affect the characteristics of damping ratio and mass ratio. Damping and mass ratio increase as the section of vertical column of LCVA decreases, due to turbulence in the elbow of LCVA.