• 제목/요약/키워드: damping model

검색결과 1,671건 처리시간 0.033초

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Research on the anti-seismic performance of composite precast utility tunnels based on the shaking table test and simulation analysis

  • Yang, Yanmin;Li, Zigen;Li, Yongqing;Xu, Ran;Wang, Yunke
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.163-173
    • /
    • 2021
  • In this paper, the parameters of haunch height, reinforcement ratio and site condition were evaluated for the influence on the seismic performance of a composite precast fabricated utility tunnel by shaking table test and numerical simulation. The dynamic response laws of acceleration, interlayer displacement and steel strain under unidirectional horizontal seismic excitation were analyzed through four specimens with a similarity ratio of 1:6 in the test. And a numerical model was established and analyzed by the finite element software ABAQUS based on the structure of utility tunnel. The results indicated that composite precast fabricated utility tunnel with the good anti-seismic performance. In a certain range, increasing the height of haunch or the ratio of reinforcement could reduce the influence of seismic wave on the utility tunnel structure, which was beneficial to the structure earthquake resistance. The clay field containing the interlayer of liquefied sandy soil has a certain damping effect on the structure of the utility tunnel, and the displacement response could be reduced by 14.1%. Under the excitation of strong earthquake, the reinforcement strain at the side wall upper end and haunches of the utility tunnel was the biggest, which is the key part of the structure. The experimental results were in good agreement with the fitting results, and the results could provide a reference value for the anti-seismic design and application of composite precast fabricated utility tunnel.

하이브리드 추진 시스템을 이용한 수송용 멀티콥터 무인기의 구조 및 동특성 해석 (Structural and Dynamic Analysis of a Unmanned Cargo Multicopter Using Hybrid Power System)

  • 기영중;김태균
    • 항공우주시스템공학회지
    • /
    • 제16권5호
    • /
    • pp.78-85
    • /
    • 2022
  • 산악이나 도서 지역으로의 물품수송, 재난지역의 영상정보 획득 및 긴급 구호물품 등을 수송하는데 멀티콥터 형태의 무인기를 활용하고자 하는 수요가 증가하고 있다. 이와 같은 임무를 성공적으로 수행하기 위해서는 비행 조건에 따라 발생하는 하중을 기체 구조물이 안전하게 지지하는 동시에 프롭로터의 진동 및 공탄성 안정성 확보 여부를 확인할 필요가 있다. 본 논문에서는 엔진과 발전기 조합의 하이브리드 동력 시스템이 장착된 탑재중량 40kg급 멀티콥터 무인기의 구조해석 모델 생성과 하중조건에 따른 변형 및 응력 분포 검토과정을 소개하였다. 또한 비행 속도와 기체의 피치각 조건에 따른 프롭로터 시스템의 진동 특성과 공탄성 안정성 해석 결과를 제시하였다. 프롭로터를 통해 발생하는 최대추력 및 정상, 비정상 착륙조건에 따라 기체에 작용하는 착륙하중을 검토하였으며, 구조물의 파손 없이 지지할 수 있음을 확인하였다. 기체의 비행 속도와 프롭로터의 회전속도에 따라 주요 모드별 감쇠 특성이 안정한 영역에 위치함을 확인하였다.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명 (Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors)

  • 백두산;황성호;김태호
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Study on seismic performance of shaking table model of full light-weight concrete utility tunnel

  • Yanmin Yang;Qi Yuan;Yongqing Li;Jingyu Li;Yuan Gao;Yuzhe Zou
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.15-26
    • /
    • 2023
  • In order to study the anti-seismic performance of full light-weight concrete utility tunnel, EL Centro seismic waves were input, and the seismic simulation shaking table test was carried out on the four utility tunnel models. The dynamic characteristics and acceleration response of the system consisting of the utility tunnel structure and the soil, and the interlayer displacement response of the structure were analyzed. The influence law of different construction methods, haunch heights and concrete types on the dynamic response of the utility tunnel structure was studied. And the experimental results were compared with the finite element calculation results. The results indicated that with the increase of seismic wave intensity, the natural frequency of the utility tunnel structure system decreased and the damping ratio increased. The assembling composite construction method could be equivalent to replace the integral cast-in-place construction method. The haunch height of the assembling composite full light-weight concrete utility tunnel was increased from 30 mm to 50 mm to enhance the anti-seismic performance during large earthquakes. The anti-seismic performance of the full light-weight concrete utility tunnel was better than that of the ordinary concrete utility tunnel. The peak acceleration of the structure was reduced by 21.8% and the interlayer displacement was reduced by 45.8% by using full light-weight concrete. The finite element simulation results were in good agreement with the experimental results, which could provide reference for practical engineering design and application.

프로펠러 감쇄기를 이용한 고속정 진동 감소방안 연구 (A Study on the Reduction of the Vibration in PKM Using a Propeller Damper)

  • 김혜진;이근화;성우제;표상우
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.103-110
    • /
    • 2008
  • 작전 수행시 고속으로 운행해야 하는 고속정의 경우 프로펠러에 의한 진동이 크게 발생하며 이로 인하여 승조원의 근무환경이 악화되고 피탐 가능성이 증가된다. 본 논문에서는 프로펠러에서 기인하는 고속정 진동을 저감시키기 위한 하나의 방안으로 프로펠러 감쇄기에 대한 연구를 수행했다. 프로펠러 감쇄기는 프로펠러 변동압력이 직접적으로 작용하는 선체의 하부평판의 일정영역을 고립시키는 (isolated) 방식으로 고안되었다. 본 연구에서는 프로펠러 감쇄기를 높은 감쇄비를 갖는 고립된 평판으로 단순화시켜 프로펠러 변동압력에 대한 DnV식과 유한요소 모델 (ANSYS)을 이용해 고속정의 선미부에 대해 진동해석을 실시했다. 이 해석을 통해 감쇄기의 감쇄효과를 확인하였으며 실제 고속정에 측정된 실측자료를 근거로 프로펠러 감쇄기 장착후의 격실별 진동가속도 감소율을 예측하였다.

기초구조물로서 얇은 쉘 구조물의 지진응답 (Seismic Response on Thin Shell as Structural Foundation)

  • 이휘민;아지자 압둘 나살;김재열
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

신뢰도 기반 활하중모델에 의한 강합성 사장교의 충격계수 평가 (Evaluation of Impact Factor in Composite Cable-Stayed Bridges under Reliability-based Live Load Model)

  • 박재봉;박용명;김동현;이종한
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.335-346
    • /
    • 2013
  • AASHTO LRFD 및 도로교한계상태설계기준에서는 신뢰도 기반 활하중 모델로부터 결정된 트럭하중과 차로하중을 동시에 재하하도록 하고 있으며, 트럭하중은 충격계수를 고려하되 차로하중은 충격계수를 적용하지 않도록 규정하고 있다. 본 연구에서는 중앙경간 230m, 400m 및 540m의 멀티케이블 강합성 사장교를 대상으로 트럭하중과 차로하중이 동시에 주행하는 경우에 대해 차량-교량 상호작용 해석을 수행하고 케이블과 보강거더의 충격계수를 평가하였다. 트럭하중은 6-자유도의 차량 모델을 사용하였으며, 차로하중은 일련의 1축 차량이 연행해서 주행하는 것으로 모사하였다. 교량의 감쇠비가 충격계수에 미치는 영향을 평가하였으며, 충격에 영향을 미치는 주요 인자인 노면조도와 주행속도를 해석변수로 고려하였다. 노면조도는 ISO 8608 규정에 근거하여 랜덤 생성하였으며, 차량-교량 상호작용해석 시 노면조도는 트럭하중에만 적용하였다. 한편, 사장교의 충격계수 평가를 위해 실무에서 사용되고 있는 영향선 기법에 의한 충격계수를 동적 상호작용 해석에 의한 결과와 비교하였다.