• Title/Summary/Keyword: damping matrix

Search Result 215, Processing Time 0.025 seconds

Analysis of Free Vibration and Damping Characteristics of a Composite Plate by Using Modified 3-Dimensional 16-Node Elements (수정된 3차원 16절점 요소에 의한 복합재 판의 자유진동 및 감쇠특성 해석)

  • 윤태혁;김상엽;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.990-1004
    • /
    • 1995
  • A modified 16-node element for composite plate has been proposed and compared with the 20-node element to check the validity of it. The fields of numerical inspection include mode analysis and specific damping analysis. By symetrizing the conventional unsymmetric damping matrix in the analysis of specific damping capacity, we could compute the specific damping capacity and make a program, effectively. In addition, we could predict the errors caused by reduction of integration order in thickness direction depending upon the number of layers.

Dependence of Damping Capacity on ${\beta}$ Phase Precipitation in Mg Alloy (Mg 합금에서 진동감쇠능의 ${\beta}$상 석출 의존성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.306-310
    • /
    • 2007
  • Changes in microstructure and damping capacity with aging time for solutionized Mg-Al alloy have been investigated. Discontinuous ${\beta}\;(Mg_{17}Al_{12})$ precipitates form along the primary grain boundaries, the amount of which increases as the aging time increases. The hardness of the matrix with respect to aging time shows a typical "S" shape, indicating a generation of fine continuous precipitates in the matrix during the aging. The peak level of damping capacity is obtained after 1 hour of aging, over which the damping capacity becomes deteriorated continuously. The formation of optimum density of continuous ${\beta}$ precipitates with fine morphology which would act as pinning points for dislocation lines, might be responsible for the improvement of damping capacity.

New Global Curve-Fitting Method Using Frequency Response Function (주파수 전달함수를 이용한 신 포괄 곡선맞춤법)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.82-86
    • /
    • 2009
  • Several damping materials have been employed to reduce the vibration of structures. While it is important to estimate the damping matrix when analyzing damped composite structures using the finite element method (FEM), at present, there is no FEM program that can correctly estimate the damping matrix. In this paper, a new global curve-fitting method is proposed for identifying the system parameters of non-proportional damping structures using a frequency response function. An experimental test for a cantilever beam attached damping material was carried out to verify the performance of the method proposed in this study.

Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy (Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.144-148
    • /
    • 2011
  • Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.

Structural damping for soil-structure interaction studies

  • Lutes, Loren D.;Sarkani, Shahram
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • A soil-structure interaction formulation is used here which is based on consideration of the dynamics of the structure with a free, rather than a fixed, base. This approach is shown to give a quite simple procedure for coupling the dynamic characteristics of the structure to those of the foundation and soil in order to obtain a matrix formulation for the complete system. In fixed-base studies it is common to presume that each natural mode of the structure has a given fraction of critical damping, and since the interaction formulation uses a free-base model, it seems natural for this situation to assign the equal modal damping values to free-base modes. It is shown, though, that this gives a structural model which is significantly different than the one having equal modal damping in the fixed-base modes. In particular, it is found that the damping matrix resulting in equal modal damping values for free-based modes will give a very significantly smaller damping value for the fundamental distortional mode of the fixed-base structure. Ignoring this fact could lead one to attribute dynamic effects to interaction which are actually due to the choice of damping.

Computational Modeling of Mount Joint Part of Machine Tools (공작기계 마운트 결합부의 전산 모델링)

  • Ha, Tae-Ho;Lee, Jae-Hak;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1056-1061
    • /
    • 2012
  • FEM analysis is essential to shorten the development time and reduce the cost for developing high-performance machine tools. Mount joint parts play important role to ensure static and dynamic stability of machine tools. This paper suggests a computational modeling of mount joint part of machine tools. MATRIX27 element of ANSYS is adopted to model mount joint parts. MATRIX27 allows the definition of stiffness and damping matrices in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node. Stiffness and damping values of commercial mount products are measured to build a database for FEM analysis. Jack mounts with rubber pad are exemplified in this paper. The database extracted from the experiments is also used to estimate of stiffness and damping of untested mounts. FEM analysis of machine tools system with the suggested mount computational model is performed. Static and dynamic results prove the feasibility of the suggested mount model.

A Method for Checking Missed Eigenvalues in Eigenvalue Analysis with Damping Matrix

  • Jung, Hyung-Jo;Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Sensitivity-based finite element model updating with natural frequencies and zero frequencies for damped beam structures

  • Min, Cheon-Hong;Hong, Sup;Park, Soo-Yong;Park, Dong-Cheon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.904-921
    • /
    • 2014
  • The main objective of this paper is to propose a new Finite Element (FE) model updating technique for damped beam structures. The present method consists of a FE model updating, a Degree of Freedom (DOF) reduction method and a damping matrix identification method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using the natural frequencies and the zero frequencies is introduced. Second, an Iterated Improved Reduced System (IIRS) technique is employed to reduce the number of DOF of FE model. Third, a damping matrix is estimated using modal damping ratios identified by a curve-fitting method and modified matrices which are obtained through the model updating and the DOF reduction. The proposed FE model updating method is verified using a real cantilever beam attached damping material on one side. The updated result shows that the proposed method can lead to accurate model updating of damped structures.

사진렌즈 설계에서 SVD에 의한 감쇠최소자승법의 수렴성과 안정성

  • 김태희;김경찬
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.178-187
    • /
    • 1995
  • The method that determines the appropriate damping factor is studied for a lens design. When suitable damping factor is applied to the additive damped least-squares (DLS) method, the convergence and the stability of the optimization process are examined in a triplet-type photographic lens design. We calculate eigenvalues of the product of the Jacobian matrix of error functions by using the singular value decomposition (SVD) method. We adopt the median of eigenvalues as an appropriate damping factor. The convergence and the stability of the optimization process are improved by choosing the adequate damping factor for the optimization of a photographic lens. It is known that the numerical inaccuracy in the calculation of normal equation is overcome by using the orthogonal transformations of the Jacobian matrix. Therefore, a combination of the method for setting a proper damping factor and the orthogonal transformations of the Jacobian matrix is good for application to the design of an aspheric lens with high-order terms. terms.

  • PDF

Effects of Alloying Elements on the Damping Capacities and Mechanical Properties in 3.9%C Gray Cast Iron (3.9%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 합금원소 첨가의 영향)

  • Kim, J.C.;Son, Y.C.;Han, D.W.;Baik, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 1997
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occuring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Ni on the damping capacities and mechanical properties are investigated in 3.9%C-0.3% Cu gray cast iron. At 0.2% Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content, Graphite continuity also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite continuity. On the other hand, the damping capacity in pearlite matrix showed superior to that in ferrite. In contrast, with increasing the Ni content, both tensile strength and hardness increased due to the decrease of graphite length and eutectic cell size.

  • PDF