• 제목/요약/키워드: dampers

검색결과 1,040건 처리시간 0.026초

스트로크 포화를 고려한 직렬 복합형 감쇠기의 비선형 제어 (Nonlinear Control of Cascade Hybrid Mass Dampers considering Stroke Saturation)

  • 민경원;황성호;김성춘;호경찬;김인수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.377-386
    • /
    • 2000
  • Hybrid mass dampers consist of passive tuned mass dampers and active mass dampers. They have the advantage that passive tuned mass dampers are still operated even when active mass dampers are stopped by excessive disturbances or power failure. This paper begins first with the comparative analysis of tuned mass dampers, hybrid mass dampers, and active mass dampers. Next more detailed study is carried out on the hybrid mass dampers: cascade hybrid mass dampers (CHMD) and active tuned mass dampers (ATMD). CHMD is regarded as more reasonable device because of its lighter active mass than ATMD's. However CHMD can not neglect stroke saturation problem caused by the length limitation of active damper mass. We compensate the saturation problem with nonlinear restoring force. The restoring force is calculated based on the states and phases of active mass dampers and added to the control force. It is shown that the presented compensation method prevents CHMD from saturation behavior without apparent changes of control force and responses compared to those in case of not considering the saturation problem.

  • PDF

엔지니어링 플라스틱 슬릿댐퍼의 수치해석적 연구 (Numerical Analysis of Engineering Plastics Slit Damper)

  • 김유성;김기철
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.79-86
    • /
    • 2024
  • Recently, steel dampers are widely used as seismic reinforcement devices. Steel dampers have the advantage of being easy to manufacture and being able to absorb a lot of energy through stable hysteresis behavior. However, there is a possibility that the steel damper may be damaged due to fatigue caused by repeated seismic loads. In this study, the seismic performance of steel dampers and engineering plastic dampers with different physical characteristics were compared and analyzed. In addition, numerical analysis was performed on a hybrid damper that combines a steel damper and an engineering plastic damper. It is more effective to apply engineering plastic dampers to structures that experience significant displacement due to seismic loads. The behavior of hybrid dampers combining steel dampers and engineering plastic dampers is dominated by steel dampers. A hybrid damper in which an engineering plastic damper yields after a steel damper yields can effectively respond to various seismic loads and secure high ductility and excellent seismic performance.

Multiple tuned mass dampers for controlling coupled buffeting and flutter of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lee, Chung-Hau
    • Wind and Structures
    • /
    • 제2권4호
    • /
    • pp.267-284
    • /
    • 1999
  • Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.

응답감쇠장치가 설치된 구조물의 등가감쇠비산정에 관한 일반적인 방법 (General Method of Equivalent Damping Ratio Evaluation of a Structure equipped with Response Dampers)

  • 민경원;이영철;이상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.109-114
    • /
    • 2002
  • The purpose of this study is to propose the general method for evaluating the equivalent damping ratios of a structure with supplemental response control dampers. We define Lyapunov function of which derivative can be expressed in autoregressive form and evaluate the equivalent damping ratios by using Lyapunov function and its derivative. This Lyapunov function may be called as generalized structural energy. In this study, it is assumed that the response of a structure is stationary random process and control dampers do not affect the modal shapes of a structure, and the structure has proportional damping. Proposed method can be used to get the equivalent damping ratios of a structure with non-linear control dampers such as friction dampers as well as linear control dampers. To show the effectiveness of the proposed method. we evaluate the equivalent damping ratios of a structure with viscous dampers. AMDs. and friction dampers. The equivalent damping ratios from proposed method are compared to those from eigenvalue analysis for linear control dampers. and those from time history analysis for non-linear control dampers. respectively.

  • PDF

Wind-Induced Vibration Control of a Tall Building Using Magneto-Rheological Dampers: A Feasibility Study

  • Gu, Ja-In;Kim, Saang-Bum;Yun, Chung-Bang;Kim, Yun-Seok
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.61-68
    • /
    • 2003
  • A recently developed semi-active control system employing magneto-rheological (MR) fluid dampers is applied to vibration control of a wind excited tall building. The semi-active control system with MR fluid dampers appears to have the reliability of passive control devices and the adaptability of fully active control systems. The system requires only small power source, which is critical during severe events, when the main power source may fail. Numerical simulation studies are performed to demonstrate the efficiency of the MR dampers on the third ASCE benchmark problem. Multiple MR dampers are assumed to be installed in the 76-story building. Genetic algorithm is applied to determine the optimal locations and capacities of the MR dampers. Clipped optimal controller is designed to control the MR dampers based on the acceleration feedback. To verify the robustness with respect to the variation of the external wind force, several cases with different wind forces are considered in the numerical simulation. Simulation results show that the semi-actively controlled MR dampers can effectively reduce both the peak and RMS responses the tall building under various wind force conditions. The control performance of the MR dampers for wind is found to be fairly similar to the performance of an active tuned mass damper.

  • PDF

건물 구조물을 위한 능동 제어 효과를 가지는 수동 점성감쇠기의 최적 설계 (Optimal Design of Passive Viscoelastic Dampers Having Active Control Effect for Building Structures)

  • 황재승;민경원;홍성목
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.225-234
    • /
    • 1995
  • In this study, first, transformation process of damping ratios, whose are evaluated in active control analysis, into damping matrix resulting from installed viscous dampers is illustrated. Then, a method is followed to maximize the effect of response reduction, which leads to optimum locations and size of viscous dampers using sensitivity analysis. Highly coupled nonlinearity between damping ratios and dampers makes it hard to find the optimal size of dampers. Therefore, the nonlinearity is transformed to linear problem with small increments of damping ratios and the size of dampers can be found. However, there are many cases for the size of dampers satisfying the small increment of damping ratios, so it is necessary to select minimum size using optimization technique. To determine optimum locations of dampers, dampers are assumed to be installed between the different stories and their locations are selected corresponding corresponding to the degree of damping size. Numerical examples for the frame structure and the shear wall structure show that optimum locations and size of dampers are different form each other depending on the characteristics of modal responses of the structures. The proposed method in this study can be applied to get optimum locations of active controller in the active control.

  • PDF

점탄성 감쇠기가 설치된 고층건물의 효율적인 진동제어 (Efficient Control of Tall Buildings with Viscoelastic Dampers)

  • 김상태
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.167-174
    • /
    • 1997
  • Viscoelastic dampers have been successfully applied in building structures to reduce vibration by wind and earthquakes. It may be inefficient or be uneconomical that viscoelastic damper is installed at each story of building structures. Although the number of viscoelastic dampers is reduced, if viscoelastic dampers are installed at only suitable places in building structures, vibration would be controlled by efficiency. In this paper, responses of building structures according to the situation of viscoelastic dampers are compared. Then efficient and economical arrangements of viscoelastic dampers are proposed.

  • PDF

실물크기 점탄성 감쇠기의 동적 특성 (Dynamic Characteristics of Full-Scale Viscoelastic Dampers)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.367-374
    • /
    • 1999
  • this paper focuses on the dynamic characteristics of full-scale viscoelastic dampers through the experimental study. Viscoelastic dampers which dissipate the response energy of a building under earthquake excitation make a role of increasing damping capacity of the building. Therefore it is important to recognize the damping behavior of viscoelastic dampers. Full-scale viscoelastic dampers are made of three types of rubbers for experimental test. The hysteretic behavior is obtained through the load-deformation experiment over the various loading frequencies and damper strains The experimental results show the good performance of viscoelastic dampers under earthquake excitations,

  • PDF

교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석 (Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges)

  • 정상모;안창모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

Seismic performance evaluation of moment frames with slit-friction hybrid dampers

  • Lee, Joonho;Kim, Jinkoo
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1291-1311
    • /
    • 2015
  • This study investigates the seismic energy dissipation capacity of a hybrid passive damper composed of a friction and a hysteretic slit damper. The capacity of the hybrid device required to satisfy a given target performance of a reinforced concrete moment resisting frame designed with reduced design base shear is determined based on the ASCE/SEI 7-10 process, and the seismic performances of the structures designed without and with the hybrid dampers are verified by nonlinear dynamic analyses. Fragility analysis is carried out to investigate the probability of a specified limit state to be reached. The analysis results show that in the structure with hybrid dampers the residual displacements are generally reduced and the dissipated inelastic energy is mostly concentrated on the dampers. At the Moderate to Extensive damage states the fragility turned out to be smallest in the structure with the hybrid dampers.