• 제목/요약/키워드: damaged reinforced concrete

검색결과 318건 처리시간 0.021초

손상된 철근콘크리트 구조물의 구조성능평가 (Structural Performance Assessment of Damaged Reinforced Concrete Structures)

  • 김태훈;김영진
    • 한국지진공학회논문집
    • /
    • 제15권1호
    • /
    • pp.19-28
    • /
    • 2011
  • 이 연구에서는 손상된 철근콘크리트 구조물의 구조성능평가를 위한 비선형 유한요소해석 기법을 제시하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 그리고 철근콘크리트 구조물의 비탄성거동의 예측에 근거한 손상지수를 제시하였다. 이 연구에서는 손상된 철근콘크리트 구조물의 구조성능을 파악하기 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

화해를 입은 철근콘크리트 기둥의 구조성능 저하 (Deterioration of Structural Capacity of Fire-Damaged Reinforced Concrete Column)

  • 이차돈;신영수;홍성걸;이승환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.371-374
    • /
    • 2003
  • The degree of changes in mechanical properties of fire-damaged reinforced concrete column depends mostly on sectional geometry, duration exposed to fire, and moisture containment. In order to reasonably assess the deterioration of structural capacity of fire-damaged reinforced concrete column, it is necessary to develop a theoretical model predicting column behavior based on nonlinear heat transfer equation in addition to the traditional mechanics. This research focuses on the development of theoretical model to predict moment-curvature relations of fire-damaged reinforced column. The model is used for the assessment of structural capacity of fire-damaged column in terms of moment-curvature relations and PM interaction curves.

  • PDF

$P-{\Delta}$ 영향을 화해를 입은 기둥의 거동 (Structural Behavior of Fire-Damaged Reinforced Columns with $P-\Delta$ Effect)

  • 이차돈;이창은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.514-519
    • /
    • 2004
  • The paper discusses the general behavior of fire-damaged slender reinforced concrete columns on the basis of results obtained from parametric studies. Effects of slenderness ratio, concrete strength, cover thickness, reinforcement ratios, exposed time to fire, and eccentricity on the ultimate capacity of fire-damaged column are theoretically observed. With the increase of slenderness ratio, similar tendency of relative strength reduction was observed between fire-damaged columns and columns at room temperature.

  • PDF

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

피로거동파악을 위한 성능향상된 교량상판의 사전피로손상의 고찰 (Pre-fatigue Damage of the Strengthened Bridge Deck for Study on Fatigue Behavior)

  • 심종성;오홍섭;김진하
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.697-700
    • /
    • 2000
  • Fatigue damage to reinforced concrete bridge decks have been found in many bridges. Failure mode of most reinforced concrete decks is caused by local punching shear rather than flexural moment due to cumulated damage. In this study, mechanical degradation of unstrengthened and strengthened bridge deck specimens is experimentally investigated. The unstrengthened deck specimens were damaged under the pulsating loading condition. After the test, deteriorated deck specimens were strengthened with Carbon Fiber Sheet, then loaded to observe the improvement of the fatigue behavior. It is shown that fatigue damaged specimens are similar to real bridge rather than static damaged specimens.

  • PDF

화재로 인해 손상 받은 철근콘크리트 구조물의 콘크리트 부착강도 평가 (Evaluation of Bond Strength of a Fire-Damaged Reinforced Concrete Structure)

  • 심종성;문도영;이정환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.211-213
    • /
    • 2003
  • Evaluation of bond strength of a fire-damaged reinforced concrete structure for determining whether to reuse, reinforced, or abandon the structure is very important. Recently, calculating method for changes in bond strength of rebars is proposed by C. Chiang. The equation is relating the ratio of residual bond strength, R, to temperature, T, and exposure time, t. This study presented and verified a general process for evaluating damage to bond strength of RC structure arising from high temperature.

  • PDF

A Case Study on the Assessment of Damaged Cause for the Damaged Reinforced Concrete Pier

  • Chai, Won-Kyu;Kim, Kwang-Il;Son, Young-Hyun
    • International Journal of Safety
    • /
    • 제10권1호
    • /
    • pp.16-21
    • /
    • 2011
  • In this thesis, appearance inspection, compressive strength of concrete test, arrangement of bar inspection, survey, and bearing stress analysis were performed on a damaged coping of reinforced concrete pier to investigate the damage cause. According to the performed a series of inspections, it was found that the coping of pier was damaged during PSC (Pre-stressed Concrete) beam construction. In this thesis, the repair method for damaged pier was studied. The repair procedure used in this thesis was follows : chipping for damaged part, clean by high-pressure, installation of wire mesh, coating of surface hardening, construction of section restoration material, copula grinding, and prevent coating for far-infrared radiation.

  • PDF

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.121-136
    • /
    • 2024
  • In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.