• Title/Summary/Keyword: damaged building

Search Result 360, Processing Time 0.032 seconds

Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes (연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가)

  • Shin, Jiuk;Kim, JunHee;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Rehabilitation of heavily earthquake damaged masonry building using steel straps

  • Altin, Sinan;Kuran, Fikret;Anil, Ozgur;Kara, M. Emin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.651-664
    • /
    • 2008
  • The purpose of this study is to develop a rehabilitation technique for heavily earthquake damaged masonry buildings. A full scale one storey masonry building with window and door openings was manufactured and tested on the shock table by applying increased amplitude free vibration up to the point where heavy earthquake damage was observed. Damaged test building was rehabilitated with vertical and diagonal steel straps and then tested again. The effectiveness of improvements obtained by the rehabilitation technique was investigated. Steel straps improved the lateral strength and stiffness of masonry walls and limited the lateral displacement of building. Stability of the masonry walls were also improved by the steel straps. Steel straps reduced the natural period of the earthquake damaged masonry building and prevented the failure of the building at the same amplitude of free vibration.

Behaviour of Concrete Building with High Temperature (콘크리트의 고온에서의 거동)

  • 이병곤;태순호
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.140-145
    • /
    • 1997
  • The main purpose of this study is to establish the reliable method for evaluating fire damage of reinforced concrete building, by using the rational procedure, and to develope the rehabilitation methods of fire damaged concrete structures. Especially, this proposed evaluation method is applied to the fire damaged concrete buildings of domestic, and the rehabilitation methods on the basis of these applied results are proposed and those example are shown. The proposed rational evaluation method for fire damaged concrete building proceeds is estimating the reduction of the mechanical properties of concrete of fire damaged structural members in comparison with the experimental results which are obtained from the compression tests of heated concrete specimens under various temperatures.

  • PDF

Life Expectation of Salt Attack for Fire Damaged RC Structure (화재피해를 입은 콘크리트 건축물의 염해 내구수명 산정)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.15-16
    • /
    • 2017
  • The properties of concrete damaged by fire change according to the temperature. Diffusion coefficient of chloride ion also can change which affect the life expectation under salt circumstance. Diffusion coefficient was measured by NT BUILD 492 using the concrete specimen damaged by high temperature. FEM analysis was performed to predict the life expectancy which can help to diagnose the concrete diagnose and to design maintenance strategy.

  • PDF

Design of a bracing-friction damper system for seismic retrofitting

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun;Kim, Jinkoo
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.685-696
    • /
    • 2008
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

DCT and DWT based Damaged Weather Radar Image Retrieval (DCT 및 DWT 기반의 손상된 기상레이더 영상 복원 기법)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Won;Noh, Huiseong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.153-162
    • /
    • 2017
  • Today, weather radar is used as a key tool for modern high-tech weather observations and forecasts, along with a wide variety of ground gauges and weather satellites. In this paper, we propose a frequency transform based weather radar image processing technique to improve the weather radar image damaged by beam blocking and clutter removal in order to minimize the uncertainty of the weather radar observation. In the proposed method, DCT based mean energy correction is performed to improve damage caused by beam shielding, and DWT based morphological image processing and high frequency cancellation are performed to improve damage caused by clutter removal. Experimental results show that the application of the proposed method to the damaged original weather radar image improves the quality of weather radar image adaptively to the weather echo feature around the damaged area. In addition, radar QPE calculated from the improved weather radar image was also qualitatively confirmed to be improved by the damage. In the future, we will develop quantitative evaluation scales through continuous research and develop an improved algorithm of the proposed method through numerical comparison.

A Study on the Improvement of Repair and Reinforcement Quantity Take-off in Fire-damaged Area Using 3D Laser Scanning (3D Laser Scanning을 활용한 화재 손상 부위의 보수·보강 물량 산출 방식 개선에 관한 연구)

  • Jeong, Hoi-Jae;Ham, Nam-Hyuk;Lee, Byoung-Do;Park, Kwang-Min;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Recently, there is an increase in fire incidents in building structures. Due to this, the importance of fire-damaged buildings' safety diagnosis and evaluation after fire is growing. However, the existing fire-damaged safety diagnosis and evaluation methods are personnel-oriented, so the diagnostic results are intervened by investigators' subjectivity and unquantified. Thus, improper repair and reinforcement can result in secondary damage accidents and economic losses. In order to overcome these limitations, this study proposes using 3D laser scanning technology. The case analysis of fire-damaged building structures was conducted to verify the effectiveness of accuracy and manpowering by comparing the existing method and the proposed method. The proposed method using 3D laser scanning technology to obtain point cloud data of fire-damaged field. The point cloud data and BIM model is combined to inspect the fire-damaged area and depth. From inspection, quantified repair and reinforcement quantity take-off can be acquired. Also, the proposed method saves half of the manpowering within same time period compared to the existing method. Therefore, it seems that using 3D laser scanning technology in fire-damaged safety diagnosis and evaluation will improve in accuracy and saving time and manpowering.

Full Polarimetric SAR Decomposition Analysis of Landslide-affected Areas in Mocoa, Colombia

  • Jeon, Hyeong-Joo;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.365-374
    • /
    • 2017
  • SAR (Synthetic Aperture Radar) is an effective tool for monitoring areas damaged by disasters. Full PolSAR (Polarimetric SAR) enhances SAR's capabilities by providing specific scattering mechanisms. Thus, full PolSAR data have been widely used to analyze the situation when disasters occur. To interpret full PolSAR data, model-based decomposition methods are frequently used due to its easy physical interpretation of PolSAR data and computational efficiency. However, these methods present problems. One of the key problems is the overestimation of the volume scattering component. To minimize the volume scattering component, the OA (Orientation Angle) compensation method is widely utilized. This paper shows that the effect of the OA compensation was analyzed over landslide affected areas. In this paper, the OA compensation is applied by using the OA estimated from the maximum relative Hellinger distance. We conducted an experiment using two full polarimetric ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar)-2 data collected over Mocoa, Colombia which was seriously damaged by the 2017 Mocoa landslide. After OA compensation, the experimental results showed volume scattering power decreased, while the double-bounce and surface scattering power increased. Particularly, significant changes were noted in urban areas. In addition, after OA compensation, the separability of the double-bounce and surface scattering components are improved over the damaged building areas. Furthermore, changes in the OA can discriminate visually between the damaged building areas and undamaged areas. In conclusion, we demonstrated that the effect of OA compensation improved the influence of the double-bounce and surface scattering components, and OA changes can be useful for detecting damaged building areas.

Response Characteristics of a Nonlinear MDOF Structure with Friction Dampers (마찰형 감쇠기가 설치된 다자유도 비선형 건물의 응답특성)

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.561-567
    • /
    • 2007
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

  • PDF

Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness (층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구)

  • Yoo, Seok-Hyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.