• Title/Summary/Keyword: damage scenario

Search Result 314, Processing Time 0.021 seconds

Review of earthquake-induced landslide modeling and scenario-based application

  • Lee, Giha;An, Hyunuk;Yeon, Minho;Seo, Jun Pyo;Lee, Chang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.963-978
    • /
    • 2020
  • Earthquakes can induce a large number of landslides and cause very serious property damage and human casualties. There are two issues in study on earthquake-induced landslides: (1) slope stability analysis under seismic loading and (2) debris flow run-out analysis. This study aims to review technical studies related to the development and application of earthquake-induced landslide models (seismic slope stability analysis). Moreover, a pilot application of a physics-based slope stability model to Mt. Umyeon, in Seoul, with several earthquake scenarios was conducted to test regional scale seismic landslide mapping. The earthquake-induced landslide simulation model can be categorized into 1) Pseudo-static model, 2) Newmark's dynamic displacement model and 3) stress-strain model. The Pseudo-static model is preferred for producing seismic landslide hazard maps because it is impossible to verify the dynamic model-based simulation results due to lack of earthquake-induced landslide inventory in Korea. Earthquake scenario-based simulation results show that given dry conditions, unstable slopes begin to occur in parts of upper areas due to the 50-year earthquake magnitude; most of the study area becomes unstable when the earthquake frequency is 200 years. On the other hand, when the soil is in a wet state due to heavy rainfall, many areas are unstable even if no earthquake occurs, and when rainfall and 50-year earthquakes occur simultaneously, most areas appear unstable, as in simulation results based on 100-year earthquakes in dry condition.

Establishment Strategics for Making a Port Specialized in Liquid Cargoes Safer - Focusing on Accident Scenario and Risk Analysis - (액체화물특화 항만의 해양환경사고 안전항만 구축방안 연구 -사고 시나리오 및 위험도 분석을 중심으로-)

  • Jung, Won-Jo;Lim, Sang-Seop;Park, Nam-Ki
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • The purpose of this study was to analyze the risk and vulnerability of marine accidents based on statistical data on marine accidents at Ulsan Port, which has the largest amount of liquid cargo in Korea. It was found to be quite vulnerable to the risk of marine accidents, environmental damage, and vulnerability to environmental pollution accidents. Based on analysis results, marine accident scenarios and accident response strategies were prepared. Additionally, as a response strategy to prepare for large-scale marine pollution accidents at Ulsan Port, it is necessary to establish control equipment and infrastructure, as well as establish a control center to integrate marine accident safety functions. In particular, in the case of liquid cargo specialized ports such as Ulsan Port, considering the size of the cargo volume and the frequency of marine pollution accidents, it is urgent to build professional safety management institutions, which should make the port safer.

Ground Motion Simulation of Scenario Earthquakes in the Nakdonggang Delta Region using a Broadband Hybrid Method and Site Response Analysis (광대역 하이브리드 기법과 지반응답 해석을 통한 낙동강 삼각주 지역의 가상지진 지반운동 시뮬레이션)

  • Kim, Jaehwi;Oh, Junsu;Jeong, Seokho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.233-247
    • /
    • 2024
  • The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.

Freeze Risk Assessment for Three Major Peach Growing Areas under the Future Climate Projected by RCP8.5 Emission Scenario (신 기후변화시나리오 RCP 8.5에 근거한 복숭아 주산지 세 곳의 동해위험도 평가)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • This study was carried out to evaluate a possible change in freeze risk for 'Changhowon Hwangdo' peach buds in three major peach growing areas under the future climate projected by RCP8.5 emission scenario. Mean values of the monthly temperature data for the present decade (2000s) and the future decades (2020s, 2050s, 2080s) were extracted for farm lands in Icheon, Chungju, and Yeongcheon-Gyeongsan region at 1km resolution and 30 sets of daily temperature data were generated randomly by a stochastic process for each decade. The daily data were used to calculate a thermal time-based dormancy depth index which is closely related to the cold tolerance of peach buds. Combined with daily minimum temperature, dormancy depth can be used to estimate the potential risk of freezing damage on peach buds. When the freeze risk was calculated daily for the winter period (from 1 November to 15 March) in the present decade, Icheon and Chungju regions had high values across the whole period, but Yeongcheon-Gyeongsan regions had low values from mid-December to the end of January. In the future decades, the frequency of freezing damage would be reduced in all 3 regions and the reduction rate could be as high as 75 to 90% by 2080's. However, the severe class risk (over 80% damage) will not disappear in the future and most occurrences will be limited to December to early January according to the calculation. This phenomenon might be explained by shortened cold hardiness period caused by winter warming as well as sudden cold waves resulting from the higher inter-annual climate variability projected by the RCP8.5 scenario.

Urban Flood Risk Assessment Considering Climate Change Using Bayesian Probability Statistics and GIS: A Case Study from Seocho-Gu, Seoul (베이지안 확률통계와 GIS를 연계한 기후변화 도시홍수 리스크 평가: 서울시 서초구를 대상으로)

  • LEE, Sang-Hyeok;KANG, Jung-Eun;PARK, Chang-Sug
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.36-51
    • /
    • 2016
  • This study assessed urban flood risk using a Bayesian probability statistical method and GIS incorporating a climate change scenario. Risk is assessed based on a combination of hazard probability and its consequences, the degree of impact. Flood probability was calculated on the basis of a Bayesian model and future flood occurrence likelihoods were estimated using climate change scenario data. The flood impacts include human and property damage. Focusing on Seocho-gu, Seoul, the findings are as follows. Current flood probability is high in areas near rivers, as well as low lying and impervious areas, such as Seocho-dong and Banpo-dong. Flood risk areas are predicted to increase by a multiple of 1.3 from 2030 to 2050. Risk assessment results generally show that human risk is relatively high in high-rise residential zones, whereas property risk is high in commercial zones. The magnitude of property damage risk for 2050 increased by 6.6% compared to 2030. The proposed flood risk assessment method provides detailed spatial results that will contribute to decision making for disaster mitigation.

Vulnerability Assessment of Soil Loss in Farm area to Climate Change Adaption (기후변화 적응 농경지 토양유실 취약성 평가)

  • Oh, Young-Ju;Kim, Myung-Hyun;Na, Young-Eun;Hong, Sun-Hee;Paik, Woen-Ki;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • Due to the climate change in South Korea the annual total precipitation will increase by 17 percent by 2100. Rainfall is concentrated during the summer in South Korea and the landslide of farmland by heavy rain is expected to increase. Because regional torrential rains accompanied by a storm continue to cause the damage in farmland urgent establishment of adaptation plant for minimizing the damage is in need. In this study we assessed vulnerability of landslide of farmland by heavy rain for local governments. Temporal resolution is 2000 year and the future 2020 year, 2050 year, 2100 year via A1B scenario. Vulnerability of local government were evaluated by three indices such as climate exposure, sensitivity, adaptive capacity and each index is calculated by selected alternative variable. Collected data was normalized and then multiplied by weight value that was elicited in delphi investigation. Current vulnerability is concentrated in Jeju island and Gyeongsangnam-do, however, it is postulated that Kangwon-do will be vulnerable in the future. Through this study, local governments can use the data to establish adaptation plans for farmland landslide by climate change.

Evaluation of the Application on Distributed Inundation Routing Model (SIMOD) Using MDM and FWA Method (다중흐름방향법과 평수가정법을 이용한 분포형 침수추적모형(SIMOD)의 적용성 평가)

  • Kim, Jin Hyuck;Lee, Suk Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.261-268
    • /
    • 2018
  • The study used the simplified flooding analysis model, SIMOD, to distribute the total flood discharge by time, so research on flooding in urban areas can be conducted. The conventional flooding analysis models have limitations in constructing input data and take a long time for analysis. However, SIMOD is useful because it supports rapid decision-making process using quick modeling based on simple hydrological data, such as topography and inflow flood of the study area, to analyze submerged routes formed by flooding. Therefore, the study used the SIMOD model to analyze flooding in urban areas before conducting a comparative study with the outputs from FLO-2D, which is one of the conventional flooding analysis models, to identify the model's applicability. Seongseoje was selected as the study area, as it is located downstream the Geumho river where streams flow in the adjacent areas, and dikes are high enough to apply the "Overflow and Break" scenario for urban areas. With regard to topography, the study applied DEM data for the conventional flooding analysis and DSM data to represent urban building communities, distribution of roads, etc. Input flood discharge was calculated by applying the rectangular weir equation under the bank and break scenario through a 200-year return period of a design flood level. Comparative analysis was conducted in a flooded area with a simulation time of 1-24 hours. The time for the 24-hour simulation in SIMOD was less than 7 minutes. Compared with FLO-2D, the difference in flooded areas was less than 20%. Furthermore, the study identified the need for topography data using DSM for urban areas, as the analysis result that applies DSM showed the influence of roads and buildings.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.