DOI QR코드

DOI QR Code

Ground Motion Simulation of Scenario Earthquakes in the Nakdonggang Delta Region using a Broadband Hybrid Method and Site Response Analysis

광대역 하이브리드 기법과 지반응답 해석을 통한 낙동강 삼각주 지역의 가상지진 지반운동 시뮬레이션

  • Kim, Jaehwi (Department of Civil Engineering, Changwon National University) ;
  • Oh, Junsu (Department of Civil Engineering, Changwon National University) ;
  • Jeong, Seokho (Department of Civil Engineering, Changwon National University)
  • 김재휘 (창원대학교 토목공학과) ;
  • 오준수 (창원대학교 토목공학과) ;
  • 정석호 (창원대학교 스마트그린공학부 건설시스템공학전공)
  • Received : 2024.02.05
  • Accepted : 2024.05.28
  • Published : 2024.09.01

Abstract

The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단(No. 2020R1F1A1076539)의 지원과 2023학년도 창원대학교 학생주도 창의연구프로젝트 지원사업의 지원 그리고 국가초고성능컴퓨팅센터로부터 초고성능컴퓨팅 자원과 기술지원(KSC-2021-CRE-0597)을 받아 수행된 연구결과임.

References

  1. Korea Meteorological Administration (KMA). Domestic Earthquake List.
  2. Sun CG. Seismological and geotechnical characteristics of the 12 september 2016 Gyeongju earthquake. The Magazine of The KSCE. 2017;65(4):14-19.
  3. Lee CH, Kim SY, Park JH, Kim DK, Kim TJ, Park KH. Comparative analysis of structural damage potentials observed in the 9.12 Gyeongju and 11.15 Pohang earthquakes. J Earthq Eng Soc Korea. 2018;22(3):175-184. https://doi.org/10.5000/EESK.2018.22.3.175
  4. Kim JC, Shin SH, Oh SH. Damage investigation of pilotis structures and analysis of damage causes by Pohang earthquake. Journal of the Architectural Institute of Korea Structure & Construction. 2019;35(3):3-10.
  5. Oh SH, Shin SH. Correlation Analysis of Gyeongju Earthquake Waveform and Structural Damage Scale. Journal of the Architectural Institute of Korea Structure & Construction. 2016;32(12):33-44. https://doi.org/10.5659/JAIK_SC.2016.32.12.33
  6. Ministry of Land, Infrastructure and Transport (MOLIT). Korea Seismic Design Standard (KDS 17 10 00). Ministry of Land, Infrastructure and Transport, Korea (in Korean); c2018.
  7. Yoon JG, Kim DS. Evaluation of earthquake ground motion considering dynamic site characteristics in Korea. J Earthq Eng Soc Korea. 2004;8(3): 23-32. https://doi.org/10.5000/EESK.2004.8.3.023
  8. Sun CG, Chung CK, Kim DS. A proposition of site coefficients and site classification system for design ground motions at Inland of the Korean Peninsula. Journal of the Korean Geotechnical Society. 2005;21(6): 101-115.
  9. Oh HJ, Lee JS, Park HC. Microzonation of Sejong city area based on site amplification generated by pohang-type seismic waves. Journal of The Korean Society of Hazard Mitigation, 2022;22(6): 263-271. https://doi.org/10.9798/KOSHAM.2022.22.6.263
  10. Jeong C G, Park DH. Selection of input earthquake motion for dynamic analysis. Korean Geo-Environmental Conference; 2009 Sep 11; Seoul, Korea; 187-195; c2009.
  11. Kim HK, Jeong CG, Park DH. Generation of synthetic ground motion in time domain. LHI Journal of Land, Housing, and Urban Affairs. 2010;1(1):51-57. https://doi.org/10.5804/LHIJ.2010.1.1.051
  12. Park DH, C ho SM, Lee JS, Yoo JN. C urrent practice and recommendations for improvements of seismic design of free-field site and soil structures. Journal of the Korean Society of Civil Engineering, 2019;67(6):34-43.
  13. Pacific Earthquake Engineering Research Center (PEER). NGA-East: Median ground-motion models for the Central and Eastern North America region. PEER Report No. 2014/05; c2015.
  14. Goulet CA, Bozorgnia Y, Kuehn N, Al Atik L, Youngs RR, Graves RW, Atkinson G. M NGA-East ground-motion characterization model part I: Summary of products and model development. Earthquake Spectra 37.1_suppl, 2021:1231-1282. https://doi.org/10.1177/87552930211018723
  15. Mai PM., Imperatori W, Olsen KB. Hybrid broadband ground-motion simulations: Combining long-period deterministic synthetics with high-frequency multiple S-to-S backscattering. Bull Seismol Soc Am. 2010;100(5A):2124-2142. https://doi.org/10.1785/0120080194
  16. Song SG, Park EJ. Pseudo-dynamic earthquake source modeling, current status and prospect. Journal of the Geological Society of Korea. 2022;58(4):541-548. https://doi.org/10.14770/jgsk.2022.58.4.541
  17. Razafindrakoto HN, Bradley BA, Graves RW. Broadband ground- motion simulation of the 2011 Mw 6.2 Christchurch, New Zealand, earthquake. Bull Seismol Soc Am. 2018;108(4):2130-2147. https://doi.org/10.1785/0120170388
  18. Dupuis M, Paterson J, Lee R, Bradley B. Progress towards hybrid broadband ground-motion simulation of megathrust earthquakes on the Hikurangi subduction zone. Canadian Conference - Pacific Conference on Earthquake Engineering; 2023 Jun 25-30; Vancouver, Canada; c2023.
  19. Hartzell S, Harmsen S, Frankel A, Larsen S. Calculation of broadband time histories of ground motion: C omparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bull Seismol Soc Am. 1999;89(6):1484-1504. https://doi.org/10.1785/BSSA0890061484
  20. Denolle MA, Dunham EM, Prieto GA, Beroza GC. Strong ground motion prediction using virtual earthquakes. Science. 2014;343(6169): 399-403. https://doi.org/10.1126/science.1245678
  21. Bradley BA, Burks LS, Baker JW. Ground motion selection for simulation-based seismic hazard and structural reliability assessment. Earthquake Engineering & Structural Dynamics. 2015;44(13):2321-2340. https://doi.org/10.1002/eqe.2588
  22. Bradley BA, Pettinga D, Baker JW, Fraser J. Guidance on the utilization of earthquake-induced ground motion simulations in engineering practice. Earthquake Spectra. 2017;33(3):809-835. https://doi.org/10.1193/120216eqs219ep
  23. Lee RL, Bradley BA, Stafford PJ, Graves RW, Rodriguez-Marek A. Hybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand. Earthquake Spectra. 2020;36(2):673-699. https://doi.org/10.1177/8755293019891718
  24. Graves RW, Pitarka A. Broadband time history simulation using a hybrid approach. Proceedings of the 13th World C onference on Earthquake Engineering; 2004; Vancouver, Canada; Paper no. 1098; c2004.
  25. Graves RW, Pitarka A. Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am. 2010;100(5A):2095-2123. https://doi.org/10.1785/0120100057
  26. Graves RW, Pitarka A. Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method. Seismol Res Lett. 2015;86(1):75-80. https://doi.org/10.1785/0220140101
  27. Kim BM, Park DH. Recent trends of Ground Response Analysis. Geotechnical Engineering. 2020;36(6):66-72.
  28. Yoon JG, Kim DS, Band ES. Development of site classification system and modification of design response spectra considering geotechnical site characteristics in Korea (II) - Development of site classification system. J Earthq Eng Soc Korea. 2006;10(2):51-62. https://doi.org/10.5000/EESK.2006.10.2.051
  29. Kramer SL. Geotechnical earthquake engineering. Prentice Hall International Series; c1996.
  30. Jeong CG, Kwak DY, Park DH. Verification of frequency-dependent equivalent linear method. Journal of the Korean Geotechnical Society. 2008;24(12):113-120. https://doi.org/10.7843/KGS.2008.24.12.113
  31. Matasovic N. Seismic response of composite horizontally-layered soil deposits. Ph.D. Thesis, University of California, Los Angeles; c1993.
  32. Groholski DR, Hashash YMA, Musgrove M. Harmon J, Kim B. Evaluation of 1-D non-linear site response analysis using a general quadratic/hyperbolic strength-controlled constitutive model. Proceedings of the 6th international conference on earthquake geotechnical engineering; 2015 Nov 01-05; Christchurch, New Zealand; c2015.
  33. Groholski DR, Hashash YMA, Kim BM, Musgrove M, Harmon J, Stewart J P. Simplified model for small-strain nonlinearity and strength in 1D seismic site response analysis. J Geotech Geoenviron Eng. 2016;142(9):04016042.
  34. Shi J, Asimaki D. From stiffness to strength: Formulation and validation of a hybrid hyperbolic nonlinear soil model for site- response analyses. Bull Seismol Soc Am. 2017;107(3):1336-1355. https://doi.org/10.1785/0120150287
  35. C ampbell KW, Bozorgnia Y. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s. Earthquake Spectra. 2008;24(1):139-171. https://doi.org/10.1193/1.2857546
  36. Ryu CK, Kang S, Chung SG. Late quaternary paleoenvironmental changes in the Western Nakdong River delta. J Geo Soc Korea. 2005;26(5):443-458.
  37. Ryu CK, Kang S, Chung SG, Jeon YM. Late Quaternary depositional environmental change in the northern marginal area of the Nakdong River delta. J Geo Soc Korea. 2011;47(3):213-233.
  38. Ham AR, Shin S, Kim JC , Jung SY, Komal S, Cheong D. Late Quaternary depositional environmental changes from the middle part of Nakdong River delta core sediments. J Geo Soc Korea. 2018; 54(1):47-59. https://doi.org/10.14770/jgsk.2018.54.1.47
  39. Yoo DG, Hong SH, Lee GS, Kim JC , Yoon HH, C heong D. Stratigraphic evolution of the Nakdong River valley in response to late Quaternary sea-level changes. Mar Geol. 2020;427:106243.
  40. Kim JH, Jeong S. Characterization of deep shear wave velocity profiles in the Gimhae Plains using the microtremor array method. Journal of the Korean Geotechnical Society. 2022;38(8):17-27. https://doi.org/10.7843/KGS.2022.38.8.17
  41. Kim JH. Characterization of dynamic site properties in the Gimhae Plains using the microtremor array method and the horizontalto-vertical spectral ratio method. MS. Thesis, Changwon National University; c2023.
  42. Kim, SK, Kim, YT, Kim, JH. The guidelines for designing vertical drain boards in deep soft ground. Geotechnical Engineering. 2014; 30(5):15-24.
  43. Yoo DG, Lee GS, Kang NK, Yi BY, Kong GS, Kim GY, Chang SW, Yi S, Kim JC. Stratigraphy and depositional history of Nakdong River Delta. J Geo Soc Korea. 2017;53(5):619-630. https://doi.org/10.14770/jgsk.2017.53.5.619
  44. Kim J, Heo G, Kwak D, Jeong S. The Relationship between Bedrock depth and site fundamental frequency in the Nakdonggang delta region, South Korea. Geotechnics. 2023;3(3):550-560. https://doi.org/10.3390/geotechnics3030030
  45. Lee K. Discussions on the September 2016 Gyeongju Earthquakes. Geophysics and Geophysical Exploration. 2017;20(3):185-192. https://doi.org/10.7582/GGE.2017.20.3.185
  46. Kim S, Lim H, Ha S, Kim KH, Son M. Assessment of tectonic activity using geomorphic indices along major faults in SE Korea. J Geo Soc Korea. 2023;59(2):247-265. https://doi.org/10.14770/jgsk.2023.025
  47. Okada A, Watanabe M, Sato H, Jun MS, Jo WR, Kim SK. Jeon JS, Chi HC, Oike K. Active Fault Topography and Trench Survey in the Central Part of the Yangsan Fault, Southeast Korea. J Geogr. 1994; 103(2):111-126. https://doi.org/10.5026/jgeography.103.2_111
  48. Kyung JB, Lee K, Okada K, Takemura K, Watanabe M, Suzuki Y, Naruse T. Active fault study in the central part of the Yangsan Fault, southeastern part of Korea. Geological Society of Korea 50th Anniversary int'l Symp; Lee YI, Kim JH, editors. 1997;33-38.
  49. Yang JS, Lee HK. Quaternary fault activity of the Yangsan Fault zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea. Economic and Environmental Geology. 2014;47(1):17-27. https://doi.org/10.9719/EEG.2014.47.1.17
  50. Kwon O, Park K, Prasanajit NS, Shin HC. A study on the characteristics of fault activity in the southern part of the Ulsan fault using paleoseismic method. J Geo Soc Korea. 2021;57(2): 109-121. https://doi.org/10.14770/jgsk.2021.57.2.109
  51. Lee K, Na SH. A study of microearthquake activity of the Yangsan fault. The Journal of the Geological Society of Korea. 1983;19(3): 127-135.
  52. Kyung JB. Paleoseismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea. Geophysics and Geophysical Exploration. 2010;13(3):187-197.
  53. Choi SJ, Jeon JS, Choi JH, Kim B, Ryoo CR, Hong DG, Chwae U. Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quat Int. 2014;344:53-63. https://doi.org/10.1016/j.quaint.2014.05.052
  54. Leonard M. Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am. 2010;100(5A):1971-1988. https://doi.org/10.1785/0120090189
  55. Leonard M. Self-consistent earthquake fault-scaling relations: Update and extension to stable continental strike-slip faults. Bull Seismol Soc Am. 2014;104(6):2953-2965. https://doi.org/10.1785/0120140087
  56. Scholz C. The Mechanics of Earthquakes and Faulting. Cambridge University Press; c2002.
  57. Jo ND, Baag CE. Estimation of spectrum decay parameter k and stochastic prediction of strong ground motions in southeastern Korea. J Earthq Eng Soc Korea. 2003;7(6):59-70. https://doi.org/10.5000/EESK.2003.7.6.059
  58. Kim KH, Park JH, Park Y, Hao TY, Kim HJ. Crustal structure beneath the southern Korean Peninsula from local earthquakes. Geophys J Int. 2017;209(2):969-978. https://doi.org/10.1093/gji/ggx079
  59. Kim S, Rhie J, Kim G. Forward waveform modelling procedure for 1-D crustal velocity structure and its application to the southern Korean Peninsula. Geophys J Int, 2011;185(1):453-468. https://doi.org/10.1111/j.1365-246X.2011.04949.x