• Title/Summary/Keyword: damage process

Search Result 2,740, Processing Time 0.036 seconds

Study on Fatigue Durability Analysis of Poclain Bucket (포크레인 버켓의 피로 내구성 해석에 대한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • This study analyzes about poclain bucket through fatigue durability analysis. Maximum equivalent stress and total deformation are shown at the lower of bucket and edge part respectively. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of -10000Pa to 5000MPa and the amplitude stress of 0 to 6000MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of poclain bucket by investigating prevention and durability against fatigue damage.

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

Numerical simulation of three-dimensional crack features and chloride ion transport in unsaturated and damaged mortar

  • Zhiyong Liu;Yunsheng Zhang;Jinyang Jiang;Rusheng Qian;Tongning Cao;Yuncheng Wang;Guowen Sun
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.485-499
    • /
    • 2023
  • Both damage and unsaturated conditions accelerate the transport of erosive media inside concrete. However, their combined effects have not been fully investigated. A multiscale mortar model using representative volume elements is developed, capturing the number and distribution in each phase. Afterwards, mortar damage microstructure evolution is simulated in the tensile process. Finally, the unsaturated mortar transport is predicted and analysed. The results indicate that damage significantly affects the diffusion process in the early stage, while the transport performance is weakened due to the obstruction of the nontransport phase in the later stage. The higher the saturation and the more connected pores, the faster the diffusion rate of chloride ions. Chloride ions spread around the cracks in a tree-like manner along. The model can very well predict the chloride ion transport performance of unsaturated and damaged mortar.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

A judgment algorithm of the acoustic signal for the automatic defective manufactures detection in press process (음향방출 신호를 이용한 프레스 불량품 자동 판단 알고리즘)

  • Kim, Dong-Hun;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • A laborer always watched a process of production carefully but defective manufactures were inspected after press process. These inspections made a waste of human power and defective manufactures could make a serious damage of press mold. Therefore, AE(Acoustic Emission) system was introduced to prevention of the damage of the press molds, to a real time detection of defective manufactures and to save human power. AE system was introduced to solve this problem which is a detecting defective manufacture on real time and to prevent the damage of the press mold. In this research we get acoustic emission signal in accordance with weight and processing method of press by using AE sensor, Preamplifier, AE board signal board which occurs press processing and it analyzed various signal through using CMD8 software on the time. From the result, we found that the intensity and shape of the signal were changed according to the weight and processing type of the press. By using this special algorithm, it can judge the acoustic signal which occurs from press on real time.

A Study on the Damage Range of Chemical Leakage in Polysilicon Manufacturing Process (폴리실리콘 제조 공정에서 화학물질 누출 시 피해범위에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • There is growing interest in solar power generation due to global warming. As a result, demand for polysilicon, which is the core material for solar cells, is increasing day by day. As the market grows, large and small accidents occurred in the production process. In 2013, hydrochloric acid leaked from the polysilicon manufacturing plant in SangJu. In 2014, a fire occurred at a polysilicon manufacturing plant in Yeosu, and in 2015, STC(Silicon Tetrachloride) leaked at a polysilicon manufacturing plant in Gunsan City. Leakage of chemicals in the polysilicon manufacturing process can affect not only the workplace but also the surrounding area. Therefore, in this study, we identified the hazardous materials used in the polysilicon manufacturing process and quantitatively estimate the amount of leakage and extent of damage when the worst case scenario is applied. As a result, the damage distance by explosion was estimated to be 726 m, and the damage distance to toxicity was estimated to be 4,500 m. And, if TCS(Trichlorosilane), STC(Silicon Tetrachloride), DCS(Dichlorosilane) leaks into the air and reacts with water to generate HCl, the damage distance is predicted to 5.7 km.

Corrosion Damage Behavior of STS 304 and STS 415 for Reactor Coolant Pump during Ultrasonic-Chemical Decontamination Process (원자로 냉각재 펌프용 STS 304와 STS 415의 초음파-화학제염 공정 시 부식 손상 거동)

  • Hyeon, Gwang-Ryong;Park, Jae-Cheol;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.218-223
    • /
    • 2018
  • In this study, we proposed a new ultrasonic-chemical decontamination process for decontaminating radioactive corrosion products during the maintenance of reactor coolant pump (RCP). The actual decontamination process was reproduced in the laboratory. And the corrosion characteristics of stainless steel (STS), constituting the RCP interior parts, were examined. The weight-loss measurment and polarization experiment were carried out in order to determine the corrosion characteristics of STS 304 and STS 415 by repeated decontamination processes. The STS 304 presented a little corrosion damage, which was almost indistinguishable from visual observation. The weight-loss rate of STS 304 was also significantly lower. On the other hand, STS 415 showed severe corrosion damage on its surface, greater weight-loss rate and higher corrosion current density than STS 304.

A Study on the Damage Propagation of an Aircraft Material During Forming (항공기 재료 성형시의 손상진전에 관한 연구)

  • 김위대;김진희;김승조
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.131-140
    • /
    • 1995
  • In this paper damage propagation of a material during forming is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. The stiffness degradation of the loaded material is chosen as a damage measure. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. To simulate contact condition, extended interior penalty method with modified coulomb friction law is adopted. The displacement control method along with the modified Riks' continuation technique is used to solve the incremental iterative equations. As numerical examples, upsetting problem and backward extrusion problem are simulated and the results of damage propagation and $J_2$ stress contours with and without friction are presented.

  • PDF

Incremental Theory of Reinforcement Damage in Discontinuously-Reinforced Composite (분산형 복합재료의 강화재 손상 증분형 이론)

  • 김홍건
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.122-126
    • /
    • 2000
  • In particle or short-fiber reinforced composites cracking of the reinforcements is a significant damage mode because the broken reinformcements lose load carrying capacity . The average stress in the inhomogeneity represents its load carrying capacity and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix, An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. influence of the cracking damage on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF