• Title/Summary/Keyword: damage of renal function

Search Result 62, Processing Time 0.028 seconds

Effects of Chitosan on the Induction of Renal Dipeptidase (RDPase) from the Proximal Tubules (신장의 근위세뇨관에서 Renal Dipeptidase(RDPase)의 유도에 관한 키토산의 효과)

  • Kim, Young-Ho;Yoon, Hyun-Joong;Park, Haeng-Soon;Lee, Myung-Yul;Kim, Jong-Se
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.968-972
    • /
    • 2005
  • The purpose of this study was to evaluate the effects of chitosan, which is deacetylated derivative of chitin, on the renal function. Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) is glycosyl phosphatidyl-inositol (GPI)-anchored ectoenzyme of renal proximal tubular microvilli and was related with renal disease including acute renal failure, pyelitis and nephritis. The released RDPase and Udpase activities were assayed by modified fluorometric method. In vitro experimental groups were consisted of group 1, the concentration ranges of 0, 0.01, 0.05 and $0.1\%$ chitosan only, group 2, the concentration ranges of 1, 2 and 4 mM glycerol only, and group 3, the concentration ranges of 0, 0.01, 0.05 and $0.1\%$ chitosan in the presence of glycerol (4 mM). In vivo experimental groups were consisted of group 1 in which rats were treated with glycerol for the purpose of glycerol-induced renal damage, and group 2 in which rats were treated with chitosan plus glycerol. The RDPase release of 0.01, 0.05, and $0.1\%$ chitosan groups were increased in the concentration dependent manner. The RDPase release of 1, 2, and 4mM glycerol groups were decreased in the concentration dependent manner. Chitosan in the presence of glycerol restored the released RDPase activity in the proximal tubules. In vivo, chitosan inhibited the decrease of RDPase release by glycerol in the kidney and blocked the decrease of Udpase activity by glycerol in urine. These results indicated that chitosan was possible as a functional food to control renal function and its diseases.

Renal Manifestations and Imaging Studies of Kawasaki Disease (가와사키 질환에서의 신증상과 영상 검사 소견)

  • Oh, Ji Young;Park, Se Jin;Kim, Sun Jung;Jang, Gwang-Cheon;Kim, Uria;Shin, Jae Il;Kim, Kee Hyuck
    • Childhood Kidney Diseases
    • /
    • v.17 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • Purpose: The aim of this study was to verify renal inflammation following Kawasaki disease (KD) using single photon emission computed tomography along with Technetium-99m dimercaptosuccinic acid scintigraphy (DMSA renal SPECT). Methods: From March 2011 to October 2011, 15 patients diagnosed with KD at the National Health Insurance System Ilsan Hospital were enrolled in the study. All patients underwent DMSA renal SPECT to evaluate renal involvement during the acute phase of KD. Urine ${\beta}2$-microglobulin (${\beta}2$-MG), a marker of renal proximal tubular dysfunction, was also measured to assess renal damage. Results: All 15 patients had normal renal function test results. However, microscopic hematuria and pyuria were observed in 13% and 33% of the patients, respectively. Moreover, urine ${\beta}2$-MG was elevated in 46% of the patients. In addition, patients were divided into two groups based on ${\beta}2$-MG level: those with an increased ${\beta}2$-MG level, and those with a normal ${\beta}2$-MG level. No significant differences were found between these two groups in clinical characteristics, laboratory, sonography, and echocardiography findings. All patients' DMSA renal SPECT scans were normal. Conclusion: Our study showed that mild abnormalities in the urinalysis and elevated urine ${\beta}2$-MG were the only findings of renal involvement in KD. However, no aggressive renal manifestations were detected on DMSA renal SPECT.

A study on the renal dysfunction among workers exposed to organic solvent mixtures (저농도 복합유기용제 노출근로자의 신기능 변화에 관한 연구)

  • Kim, Jung Won;Paik, Soo Dong;Lee, Chang Hee;Kim, Jung Ho;Kang, Dong Mug;Moon, Deog Hwan;Lee, Chae Un
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • Objectives : The authors evaluated the effects on renal function of workers chronically exposed to low-level organic solvent mixtures. Methods : The authors measured the level of urine ${\beta}2$-microglobulin(${\beta}2$-MG) and microalbumin as biochemical markers of renal function and damage in 29 male workers exposed to organic solvents for more than five years and compared their results with those of 30 male office clerks as a reference group. Results : 1. The mean values of hemoglobin, hematocrit, SGOT, SGPT, ${\gamma}$-GTP were all within normal limits and there was no significant difference, except for hemoglobin(p<0.01), between exposed and reference group. 2. The values of BUN and serum creatinine were within reference limits and there was no significant difference between exposed and reference group. 3. The difference of mean values of urine microalbumin corrected by urine creatinine were statistically significant (p<0.01), but those of urine ${\beta}2$-MG was not. 4. There were no correlation of urine hippuric acids with BUN, serum creatinine, urine microalbumin and ${\beta}2$-MG. 5. There were no significant difference of BUN, serum creatinine, urine microalbumin and ${\beta}2$-MG upon work duration. Conclusions: It is assumed that chronic low-level organic solvent exposure in these workers shows early renal dysfunction, glomerular changes. The result corresponds to previous studies showing the relationship between hydrocarbon exposure and glomerulonephritis. For evaluation of impairment on kidney tubules, we need further study using more precise markers and long-term follow-up.

  • PDF

Brain consequences of acute kidney injury: Focusing on the hippocampus

  • Malek, Maryam
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2018
  • The high mortality rates associated with acute kidney injury are mainly due to extra-renal complications that occur following distant-organ involvement. Damage to these organs, which is commonly referred to as multiple organ dysfunction syndrome, has more severe and persistent effects. The brain and its sub-structures, such as the hippocampus, are vulnerable organs that can be adversely affected. Acute kidney injury may be associated with numerous brain and hippocampal complications, as it may alter the permeability of the blood-brain barrier. Although the pathogenesis of acute uremic encephalopathy is poorly understood, some of the underlying mechanisms that may contribute to hippocampal involvement include the release of multiple inflammatory mediators that coincide with hippocampus inflammation and cytotoxicity, neurotransmitter derangement, transcriptional dysregulation, and changes in the expression of apoptotic genes. Impairment of brain function, especially of a structure that has vital activity in learning and memory and is very sensitive to renal ischemic injury, can ultimately lead to cognitive and functional complications in patients with acute kidney injury. The objective of this review was to assess these complications in the brain following acute kidney injury, with a focus on the hippocampus as a critical region for learning and memory.

Fimasartan attenuates renal ischemia-reperfusion injury by modulating inflammation-related apoptosis

  • Cho, Jang-Hee;Choi, Soon-Youn;Ryu, Hye-Myung;Oh, Eun-Joo;Yook, Ju-Min;Ahn, Ji-Sun;Jung, Hee-Yeon;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Lim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.661-670
    • /
    • 2018
  • Fimasartan, a new angiotensin II receptor antagonist, reduces myocyte damage and stabilizes atherosclerotic plaque through its anti-inflammatory effect in animal studies. We investigated the protective effects of pretreatment with fimasartan on ischemia-reperfusion injury (IRI) in a mouse model of ischemic renal damage. C57BL/6 mice were pretreated with or without 5 (IR-F5) or 10 (IR-F10) mg/kg/day fimasartan for 3 days. Renal ischemia was induced by clamping bilateral renal vascular pedicles for 30 min. Histology, pro-inflammatory cytokines, and apoptosis assays were evaluated 24 h after IRI. Compared to the untreated group, blood urea nitrogen and serum creatinine levels were significantly lower in the IR-F10 group. IR-F10 kidneys showed less tubular necrosis and interstitial fibrosis than untreated kidneys. The expression of F4/80, a macrophage infiltration marker, and tumor necrosis factor $(TNF)-{\alpha}$, decreased in the IR-F10 group. High-dose fimasartan treatment attenuated the upregulation of $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 in ischemic kidneys. Fewer TUNEL positive cells were observed in IR-F10 compared to control mice. Fimasartan caused a significant decrease in caspase-3 activity and the level of Bax, and increased the Bcl-2 level. Fimasartan preserved renal function and tubular architecture from IRI in a mouse ischemic renal injury model. Fimasartan also attenuated upregulation of inflammatory cytokines and decreased apoptosis of renal tubular cells. Our results suggest that fimasartan inhibited the process of tubular injury by preventing apoptosis induced by the inflammatory pathway.

Attenuation of Ischemia-Reperfusion Injury by Antioxidant Vitamins in a Pig Model of Renal Auto-Transplantation (돼지의 신장 자가이식에서 Ascorbic Acid와 Alpha-tocoperol 의한 허혈 및 재관류 손상의 감소)

  • Kim, Myung-Jin;Lee, Jae-Yon;Cho, Sung-Whan;Park, Chang-Sik;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • This study was to determine the effects of ascorbic acid and alpha-tocopherol on the attenuation of an ischemia-reperfusion injury (IRI) after renal auto-transplantation in a pig model. In the treatment group, three pigs were subjected to a renal auto-transplantation followed by the administration of ascorbic acid and alpha-tocopherol and the flushing of ascorbic acid plus hepa-saline solution. Otherwise, the control group used only flushing of hepa-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values on the day before surgery and day 1, 3, 5 and 7 after surgery. The kidneys were taken for histopathological evaluation following euthanasia on day 14 after surgery. Serum creatinine and BUN values showed a significantly difference between control and treatment group on day 1, 3 and 5 (P<0.05). In histopathologic findings, treatment group showed less damage than that of the control group on the basis of renal tubular damage. As a result, this study suggests that the exogenous ascorbic acid and alpha-tocopherol pretreatment therapy with ascorbic acid irrigation-aspiration has a role of attenuation of renal I/R injury and recovery of renal function in a pig transplantation model.

Idiopathic infantile hypercalcemia with severe nephrocalcinosis, associated with CYP24A1 mutations: a case report

  • Yoo, Jeesun;Kang, Hee Gyung;Ahn, Yo Han
    • Childhood Kidney Diseases
    • /
    • v.26 no.1
    • /
    • pp.63-67
    • /
    • 2022
  • Nephrocalcinosis often occurs in infants and is caused by excessive calcium or vitamin D supplementation, neonatal primary hyperparathyroidism, and genetic disorders. Idiopathic infantile hypercalcemia (IIH), a rare cause of nephrocalcinosis, results from genetic defects in CYP24A1 or SLC34A1. Mutations in CYP24A1, which encodes 25-hydroxyvitamin D 24-hydroxylase, disrupt active vitamin D degradation. IIH clinically manifests as failure to thrive and hypercalcemia within the first year of life and usually remits spontaneously. Herein, we present a case of IIH wih CYP24A1 mutations. An 11-month-old girl visited our hospital with incidental hypercalcemia. She showed failure to thrive, and her oral intake had decreased over time since the age of 6 months. Her initial serum parathyroid hormone level was low, 25-OH vitamin D and 1,25(OH)2 vitamin D levels were normal, and renal ultrasonography showed bilateral nephrocalcinosis. Whole-exome sequencing revealed compound heterozygous variants in CYP24A1 (NM_000782.4:c.376C>T [p.Pro126Ser] and c.1310C>A [p.Pro437His]). Although her hypercalcemia and poor oral intake spontaneously resolved in approximately 8 months, we suggested that her nephrocalcinosis and renal function be regularly checked in consideration of potential asymptomatic renal damage. Hypercalcemia caused by IIH should be suspected in infants with severe nephrocalcinosis, especially when presenting with failure to thrive.

Hepatic and renal toxicity study of rainbow trout, Oncorhynchus mykiss, caused by intraperitoneal administration of thioacetamide (TAA) (티오아세트아미드(thioacetamide) 복강투여로 인한 무지개송어, Oncorhynchus mykiss의 간장 및 신장 독성 반응 연구)

  • Min Do Huh;Da Hye Jeong
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.415-422
    • /
    • 2023
  • In veterinary medicine for mammals, studies are being conducted to confirm the effects of antioxidants using pathological toxicity model studies, and are also used to confirm the effect of mitigating liver or kidney toxicity of specific substances. It was considered necessary to study such a toxicity model for domestic farmed fish, so thioacetamide (TAA), a toxic substance that causes tissue damage by mitochondrial dysfunction, was injected into rainbow trout (Oncorhynchus mykiss), a major farmed freshwater fish species in Korea. The experiment was conducted with 40 rainbow trout (Oncorhynchus mykiss) weighting 53 ± 0.6 g divided into two groups. Thioacetamide(TAA) 300mg/kg of body weight was intraperitoneally injected into rainbow trout and samples were taken 1, 3, 5, 7 days after peritoneal injection. As a result, in serum biochemical analysis, AST levels related to liver function decreased 3 and 5 days after intraperitoneal injection and increased after 7 days, and ALT levels also increased after 7 days. In addition, creatinine related to renal malfunction increased 3 and 5 days after TAA injection. In histopathological analysis, pericholangitis and local lymphocyte infiltration were observed in the liver from 1 day after intraperitoneal injection of TAA, and hepatic parenchymal cell necrosis was also observed from 3 days after intraperitoneal injection. Hyaline droplet in renal tubular epithelial cell was observed from 1 day after TAA injection, and acute tubular damage such as tubular epithelial cell necrosis appeared from 3 days after TAA injection. Accordingly, it is thought that it will be able to contribute to studies that require a toxicity model.

Effect of Salviae Radix herb-acupuncture on rabbits with Hg-induced acute renal failure (단삼약침(丹蔘藥鍼)이 급성신부전(急性腎不全) 가토(家兎)의 신세뇨관(腎細尿管)에 미치는 영향(影響))

  • Lim, Chun-Woo;Seo, Jung-Chul;Youn, Hyoun-Min;Jang, Kyung-Jeon;Song, Choon-Ho;Ahn, Chang-Beohm
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.111-122
    • /
    • 2001
  • Objectives ; This study was undertaken to determine if Salviae Radix herb-acupuncture (SRA) exerts protective effect against alterations in membrane transport function in rabbits with mercury chloride (Hg)-induced acute renal failure. Methods and Results ; The administration of Hg at a subcutaneous single dose of 10mg/kg caused a reduction in GFR to 9.4% of the basal value and an increase in fractional Na+ excretion to 10-fold, indicating generation of acute renal failure. When animals were acupunctured with $0.5m{\ell}$ of SRA extract (0.1%) in both sides of Shinsu(BL23) for 7 days prod to Hg administration, such changes were significantly attenuated. The fractional excretion of glucose and phosphate was increased to approximately 132-fold and 7-fold, respectively, in rabbits treated with Hg alone, but the fractional excretion of glucose was increased to 26-fold and that of phosphate was not different from the basal value in SRA-pretreated rabbits. Uptakes of glucose and phosphate in purified isolated brush-border membrane and $Na^+-K^+$-ATPase activity in microsomal fraction were inhibited in rabbits treated with Hg alone, suggesting that impairment in proximal reabsorption of glucose and phosphate is resulted from a direct damage of membrane transport carriers and disruption of the normal $Na^+$ gradient. Conclusions ; Such changes were prevented by SRA. Uptakes of organic ions, PAH and TEA, in renal cortical slices were inhibited by the administration of Hg, which was prevented by SRA. Pretreatment of an antioxidant DPPD attenuated the increase in the fractional excretion of glucose and phosphate induced by the administration of Hg.

  • PDF

Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats

  • Kang, Changgeun;Lee, Hyungkyoung;Hah, Do-Yun;Heo, Jung Ho;Kim, Chung Hui;Kim, Euikyung;Kim, Jong Shu
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats.