• Title/Summary/Keyword: damage evaluation system

Search Result 644, Processing Time 0.025 seconds

Loop modeling of VDSL system and performance evaluation of DWMT data transmission (VDSL System의 선로 모델링 및 DWMT 전송방식의 성능평가)

  • 이성재;홍훈희;김문성;곽훈성;최재호
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.853-856
    • /
    • 1999
  • In this paper, for the performance evaluation of the discrete wavelet multitone based VDSL modem we have studied VDSL system test loops(VDSL0 - VDSL7) that are proposed by ANSI T1E1.4. In addition, we have modeled the damage factors of the transmission channel and evaluated the data transmission performance of VDSL transmultiplexer based on DWMT in conjunction with the VDSL test loops. For each M-PAM signaling we have evaluated the SNRs that satisfy BER 〓 10$^{-7}$ through simulation and measured the maximum possible transmission speed on each VDSL test loop.

  • PDF

Reliability Assessment by the Scoring Model for the Advanced Pressurized water Reactor 1400MWe Project Selection under Uncertainty (신형경수로 1400을 위해 점수산정 모형에 의한 신뢰성 평가)

  • 강영식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.6
    • /
    • pp.23-35
    • /
    • 2002
  • The problem of system reliability is very important issue in the digitalized nuclear power plant, because the failure of its system brings about extravagant economic loss, environment destruction, and fatal damage of human. Therefore the purpose of this study has developed the reliability evaluation model through the scoring model by the quantitative and qualitative factors in order to justify the evaluation considering the advanced safety factors in the Advanced Pressurized water Reactor 1400MWe(APR 1400MWe) under uncertainty. Especially, the qualitative factors considering the human, information control, and quality factors for the systematic and rational justification have been closely analyzed. The proposed model can be simply applied in real fields in order to minimize the industrial accidents in the digitalized nuclear power plant.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Evaluation of Seismic Damage for RC Bridge Piers I : Theory and Formulation (철근콘크리트 교각의 지진손상 평가 I : 이론 및 정식화)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-40
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of RC bridge piers and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. n boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. In the companion paper, the proposed numerical method for seismic damage evaluation of RC bridge piers is verified by comparison with the reliable experimental results.

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

Nondestructive Evaluation Technique of Painted Sandwich Control Surfaces of CN-235 using Full-field Pulse-echo Ultrasonic Propagation Imaging System (전영역 펄스-에코 초음파전파영상화 시스템의 CN-235의 도색된 샌드위치 조종면 In-situ 비파괴평가 기술)

  • Hong, Seung-Chan;Lee, Jung-Ryul;Park, Jongwoon
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.288-292
    • /
    • 2016
  • In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is introduced. The system nondestructively inspected targets with two-axis translation stage. The coincident laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. Structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are painted sandwich control surfaces. In addition, the inspection results of FF PE UPI system are compared with conventional ultrasonic testing methods such as waterjet and portable C-scan.

A Study on Damage Evaluation of Bearings for Rotating Machinery in Power Plant Using Ultrasonic Wave (초음파를 이용한 발전용 회전기기 베어링 손상상태 평가 연구)

  • Lee, Sang-Guk;Lee, Sun-Ki;Lee, Do-Hwan;Park, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.583-589
    • /
    • 2008
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

Development of Portable Boiler Tube Health Evaluation System (휴대용 보일러튜브 건전성 평가시스템 개발)

  • Chang Min Lee;Han Sang Lee;Bum Shin Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.101-108
    • /
    • 2023
  • Although the proportion of coal-fired power generation is decreasing, efficient operating technology is needed to continuously invest in facilities and reduce maintenance costs until it is abolished. Boilers, one of the main facilities of power plants, operate for a long time in harsh environments of high temperature and high pressure. In addition, damage due to deterioration is likely to occur depending on the fuel and tube material used. It is very important to judge soundness because damage caused by deterioration adversely affects facility operation. Previously, replication method was used to analyze the progress of deterioration. In the replication method, pre-treatment such as chemical treatment is performed on the boiler tube in the field, the area is reproduced by attaching a film, and the replicated film is determined by an expert in the laboratory with an expensive microscope. However, this method involves substantial costs and time requirements, as well as the possibility of human errors. To address these issues, we developed a mobile health assessment system in this research. Since it is detachable and takes images in real time, this system enables swift evaluations across a broad range and facilitates the assessment of preprocessing quality. In addition, it was intended to reduce existing human mistakes by developing a degradation classification algorithm using the merger cluster method.

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings

  • Anic, Filip;Penava, Davorin;Abrahamczyk, Lars;Sarhosis, Vasilis
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Framed masonry wall structures represent a typical high-rise structural system that are also seismically vulnerable. During ground motions, they are excited in both in-plane and out-of-plane terms. The interaction between the frame and the infill during ground motion is a highly investigated phenomenon in the field of seismic engineering. This paper presents a numerical investigation of two distinct static out-of-plane loading methods for framed masonry wall models. The first and most common method is uniformly loaded infill. The load is generally induced by the airbag. The other method is similar to in-plane push-over method, involves loading of the frame directly, not the infill. Consequently, different openings with the same areas and various placements were examined. The numerical model is based on calibrated in-plane bare frame models and on calibrated wall models subjected to OoP bending. Both methods produced widely divergent results in terms of load bearing capabilities, failure modes, damage states etc. Summarily, uniform load on the panel causes more damage to the infill than to the frame; openings do influence structures behavior; three hinged arching action is developed; and greater resistance and deformations are obtained in comparison to the frame loading method. Loading the frame causes the infill to bear significantly greater damage than the infill; infill and openings only influence the behavior after reaching the peak load; infill does not influence initial stiffness; models with opening fail at same inter-storey drift ratio as the bare frame model.