• Title/Summary/Keyword: damage estimation

Search Result 938, Processing Time 0.025 seconds

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

Probable Volcanic Flood of the Cheonji Caldera Lake Triggered by Volcanic Eruption of Mt. Baekdusan (백두산 화산분화로 인해 천지에서 발생 가능한 화산홍수)

  • Lee, Khil-Ha;Kim, Sung-Wook;Yoo, Soon-Young;Kim, Sang-Hyun
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.492-506
    • /
    • 2013
  • The historical accounts and materials about the eruption of Mt. Baekdusan as observed by the geological survey is now showing some signs of waking from a long slumber. As a response of the volcanic eruption of Mt. Baekdusan, water release may occur from the stored water in Lake Cheonjii caldera. The volcanic flood is crucial in that it has huge potential energy that can destruct all kinds of man-made structures and that its velocity can reach up to 100 km $hr^{-1}$ to cover hundreds of kilometers of downstream of Lake Cheonji. The ultimate goal of the study is to estimate the level of damage caused by the volcanic flood of Lake Cheon-Ji caldera. As a preliminary study a scenario-based numerical analysis is performed to build hydrographs as a function of time. The analysis is performed for each scenario (breach, magma uplift, combination of uplift and breach, formation of precipitation etc.) and the parameters to require a model structure is chosen on the basis of the historic records of other volcanos. This study only considers the amount of water at the rim site as a function of time for the estimation whereas the downstream routing process is not considered in this study.

Estimation of the Flood Warning Rainfall with Backwater Effects in Urban Watersheds (도시 유역의 배수위 영향을 고려한홍수 경보 강우량 산정)

  • Kim, Eung-Seok;Lee, Seung-Hyun;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.801-806
    • /
    • 2015
  • The incidence of flood damage by global climate change has increased recently. Because of the increased frequency of flooding in Korea, the technology of flood prediction and prevalence has developed mainly for large river watersheds. On the other hand, there is a limit on predicting flooding through the most present flood forecasting systems because local floods in small watersheds rise quite quickly with little or no advance warning. Therefore, this study estimated the flood warning rainfall using a flood forecasting model at the two alarm trigger points in the Suamcheon basin, which is an urban basin with backwater effects. The flood warning rainfall was estimated to be 25.4mm/120min ~ 78.8mm/120min for the low water alarm, and 68.5mm/120min ~ 140.7mm/120min for the high water alarm. The frequency of the flood warning rainfall is 3-years for the low water alarm, and 80-years for the high water alarm. The results of this analysis are expected to provide a basic database in forecasting local floods in urban watersheds. Nevertheless, more tests and implementations using a large number of watersheds will be needed for a practical flood warning or alert system in the future.

A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed (지형이 복잡한 집수역의 소규모농장에 맞춘 기상서비스의 실현가능성)

  • Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • An adequate downscaling of synoptic forecasts is a prerequisite for improved agrometeorological service to rural areas in South Korea where complex terrains and small farms are common. In this study, geospatial schemes based on topoclimatology were used to scale down the Korea Meteorological Administration (KMA) temperature forecasts to the local scale (~30 m) across a rural catchment. Then, using these schemes, local temperatures were estimated at 14 validation sites at 0600 and 1500 LST in 2013/2014 and were compared with the observations. The estimation errors were substantially reduced for both 0600 and 1500 LST temperatures when compared against the uncorrected KMA products. The improvement was most notable at low lying locations for the 0600 temperature and at the locations on west- and south-facing slopes for the 1500 LST temperature. Using the downscaled real-time temperature data, a pilot service has started to provide the field-specific weather information tailored to meet the requirements of small-scale farms. For example, the service system makes a daily outlook on the phenology of crop species grown in a given field using the field-specific temperature data. When the temperature forecast is given for next morning, a frost risk index is calculated according to a known relationship of phenology and frost injury. If the calculated index is higher than a pre-defined threshold, a warning is issued and delivered to the grower's cellular phone with relevant countermeasures to help protect crops against frost damage.

Forecasting of Daily Minimum Temperature during Pear Blooming Season in Naju Area using a Topoclimate-based Spatial Interpolation Model (공간기후모형을 이용한 나주지역 배 개화기 일 최저기온 예보)

  • Han, J.H.;Lee, B.L.;Cho, K.S.;Choi, J.J.;Choi, J.H.;Jang, H.I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.209-215
    • /
    • 2007
  • To improve the accuracy of frost warning system for pear orchard in a complex terrain in Naju area, the daily minimum temperature forecasted by Korea Meteorological Administration (KMA) was interpolated using a regional climate model based on topoclimatic estimation and optimum scale interpolation from 2004 to 2005. Based on the validation experiments done for three pear orchards in the spring of 2004, the results showed a good agreement between the observed and predicted values, resulting in improved predictability compared to the forecast from Korea Meteorological Administration. The differences between the observed and the predicted temperatures were $-2.1{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the valley, $-1.6{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the riverside and $-1.1{\sim}3.5^{\circ}C$ (on average $0.6^{\circ}C$) in the hills. Notably, the errors have been reduced significantly for the valley and riverside areas that are more affected by the cold air drainage and more susceptible to frost damage than hills.

Evaluating Economic Value of Heat Wave Watch/Warning Information in Seoul and Busan in 2016: Focused on a Cost of Heat Wave Action Plan and Sample of Patients (2016년 서울과 부산지역 폭염특보 정보의 경제적 가치 평가 -폭염대책 비용과 환자 자료를 중심으로-)

  • Kim, In-Gyum;Lee, Seung-Wook;Kim, Hye-min;Lee, Dae-Geun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.525-535
    • /
    • 2020
  • This study aims to evaluate the economic value of the heat wave watch/warning (HW/W) forecast provided by the KMA (Korea Meteorological Administration) for the public sector. Local govermenments of Korea currently use the HW/W forecasts as a major input variable to determine the preparative requisite level for reducing potential damage by extreme heat events. To assess the value of the HW/W, which is not a marketable commodity, a decision-making model taking into account the cost and loss was established. The 'cost' variable was defined as the heat wave countermeasures budget for Seoul and Busan in 2016, and the 'loss' variable was set as the amount of health insurance claims for those 65 and older obtained from the Health Insurance Review and Assessment Service. Using this model, the value of the HW/W in 2016 was calculated as KRW 4,133M and KRW1,090M for Seoul and Busan, respectively. In addition, if the KMA reduces the False Alarm of the HW/W by a single instance, the value will be increased by KRW 76.6M and KRW 16.8M for the two cities. The results of this study are useful in quantitatively estimation of the value of the HW/W forthe public sector.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

Evaluation of the Applicability of Sediment Discharge Measurement in Mountain Stream using the Load-cell Sensor (Load-cell Sensor를 이용한 산지 토사유출량 계측의 현장 적용성 검토)

  • Seo, Jun-Pyo;Lee, Ki-Hwan;Kim, Dong-Yeob;Woo, Choong-Shik;Lee, Chang-Woo;Lee, Heon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.644-653
    • /
    • 2018
  • Landslides occur frequently due to the effects of heavy rainfall and typhoons caused by climate change. Erosion control measures are needed to effectively prevent landslide damage. In order to improve their efficiency, it is necessary to quantitatively measure the sediment discharge from the mountain stream. In this study, a load cell sensor was installed in a mountain stream and the measured values were compared according to the applicability and load test type in the mountain stream. The result of the load test showed that the effect of the loading type (load test 1, 2) was low at average (loadings) of 0.4kgf and 0.6kgf at sites 1 and 2, respectively. The load factor was also derived by regression analysis to increase the accuracy of the measured values. According to the results of the load factor (normalized) to the load-cell measurement value, the output value increased by 14.8% and 24.6% in sites 1 and 2, respectively, and was calculated to be similar to the reference value. The load cell sensor enabled us to quantitatively estimate the amount of sediment discharge in the mountain stream through time series analysis with the water level and rainfall information. If the monitoring is carried out for a long time, it can be used to find the sediment discharge mechanism for the mountain stream. In addition, applying sensors such as load-cells to a mountain stream is expected to contribute to the development of related industries, such as the manufacturing of measurement sensors.

Performance estimation depending on the insert size of conical picks by linear cutting test (선형절삭시험에 의한 코니컬커터의 삽입재 크기에 따른 절삭성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Cheol-Ho;Lee, Gyu-Phil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.221-233
    • /
    • 2016
  • In order to estimate the performance of a conical cutter depending on the insert size, this study measured forces acting on conical cutters with different cutter spacings, penetration depths and skew angles using slim and heavy conical cutters. When cutter spacings ranged from 12 to 27 mm, the deviations of mean cutter forces with cutter depths appeared smaller compared to other cutter spacings. When skew angle is $0^{\circ}$, the optimal S/d ratio was obtained in the range of 4 to 4.5 for which specific energy of cutting was minimized. It were usually found in the range of 1 to 5. However, when skew angle is $6^{\circ}$, the optimal S/d ratio was obtained in the range of 1 to 3. The simple comparison results shows that the performance of slim cutter was superior to that of heavy cutter, but the use of heavy cutter can be effective, considering the cutter consumption and cutter damage when the strength of the ground is high enough.

Material Characteristics, Deterioration Evaluation and Crack Depth Estimation for Mulgyeseowon Stele in Changnyeong, Korea (창녕 물계서원 원정비의 재질특성 및 손상도 평가와 균열심도 측정)

  • Yoo, Ji Hyun;Lee, Chan Hee;Chun, Yu Gun
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.427-438
    • /
    • 2014
  • To measure the depth and extension on the surface cracks of the stone monument, ultrasonic pulse velocity targeted at the Mulgyeseowon Stele in Changnyeong was used in this research. Additionally, to establish a long-term countermeasure of management and conservation for this stele, we have investigated the material properties and damage on it and have conducted a precise diagnosis by a variety of non-destructive techniques. Our research has revealed that stones of the stele are composed mainly of three rock types according to the parts of it, alkali-feldspar granite, gabbro and diorite. The result of the deterioration evaluation has occurred that cracks, which are observed from every direction in the body of the stele, are the significant factors to reduce structural stability. The ultrasonic velocity for an evaluation on the properties of the stele has revealed that the speed was high in the order of body, pedestal and crown. Furthermore, to understand the present condition and occurrences of the cracks which have measured in many different forms on the stele quantitatively, we have estimated from 0.6 to 24.1cm deep of the cracks by To-Tc method using ultrasonic velocity.