• Title/Summary/Keyword: daily streamflow

Search Result 137, Processing Time 0.026 seconds

Estimation of Curve Number by DAWAST Model (DAWAST 모형을 이용한 유출곡선번호 추정)

  • Kim, Tae-Cheol;Park, Seung-Gi;Mun, Jong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.423-430
    • /
    • 1997
  • It is one of the most important factors to determine the effective rainfall for estimation of flood hydrograph in design schedule. SCS curve number (CN) method has been frequently used to estimate the effective rainfall of synthesized design flood hydrograph for hydraulic structures. But, it should be cautious to apply SCS-CN originally developed in U.S.A to watersheds in Korea, because characteristics of watersheds in Korea and cropping patterns especially like a paddy land cultivation are quite different from those in USA. New CN method has been introduced. Maximum storage capacity which was herein defined as Umax can be calibrated from the streamflow data and converted to new CN-I of direst condition of soil moisture in the given watershed. Effective rainfall for design flood hydrograph can be estimated by the curve number developed in the watersheds in Korea.

  • PDF

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model (SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가)

  • Ahn, So Ra;Park, Geun Ae;Jang, Cheol Hee;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.569-583
    • /
    • 2013
  • This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

Evaluation of multi-objective PSO algorithm for SWAT auto-calibration (다목적 PSO 알고리즘을 활용한 SWAT의 자동보정 적용성 평가)

  • Jang, Won Jin;Lee, Yong Gwan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.803-812
    • /
    • 2018
  • The purpose of this study is to develop Particle Swarm Optimization (PSO) automatic calibration algorithm with multi-objective functions by Python, and to evaluate the applicability by applying the algorithm to the Soil and Water Assessment Tool (SWAT) watershed modeling. The study area is the upstream watershed of Gongdo observation station of Anseongcheon watershed ($364.8km^2$) and the daily observed streamflow data from 2000 to 2015 were used. The PSO automatic algorithm calibrated SWAT streamflow by coefficient of determination ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency ($NSE_Q$), and especially including $NSE_{INQ}$ (Inverse Q) for lateral, base flow calibration. The results between automatic and manual calibration showed $R^2$ of 0.64 and 0.55, RMSE of 0.59 and 0.58, $NSE_Q$ of 0.78 and 0.75, and $NSE_{INQ}$ of 0.45 and 0.09, respectively. The PSO automatic calibration algorithm showed an improvement especially the streamflow recession phase and remedied the limitation of manual calibration by including new parameter (RCHRG_DP) and considering parameters range.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts (확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.275-288
    • /
    • 2006
  • This study develops ESP (Ensemble Streamflow Prediction) system by using medium-term numerical weather prediction model which is GDAPS(T213) of KMA. The developed system forecasts medium- and long-range exceedance Probability for streamflow and RPSS evaluation scheme is used to analyze the accuracy of probability forecasts. It can be seen that the daily probability forecast results contain high uncertainties. A sensitivity analysis with respect to forecast time resolution shows that uncertainties decrease and accuracy generally improves as the forecast time step increase. Weekly ESP results by using the GDAPS output with a lead time of up to 28 days are more accurately predicted than traditional ESP results because conditional probabilities are stably distributed and uncertainties can be reduced. Therefore, it can be concluded that the developed system will be useful tool for medium- and long-term reservoir inflow forecasts in order to manage water resources.

Estimation of Watershed Parameters and Runoff Computation Using GIS (GIS를 이용한 유역매개변수의 추정 및 유출량 산정)

  • Lee, Im-Keun;Ahn, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.11-24
    • /
    • 2007
  • There exist various difficulties in runoff analysis due to many ungauged basins in Korea and the runoff phenomena is also more and more complicated by the change of geologic characteristics due to the urbanization. So, we use GIS technique which is widely used in hydrologic field and cell runoff concept for the fast and effective runoff simulation. This study uses the observations of 6 stage stations in Wi-Cheon watershed and simulates the watershed parameters by using WMS model. We construct DEM by the grids which are consisted based on the criteria of minimum area according to land use. The cell runoff is estimated by an average weighted method using mean annual streamflow and mean maximum daily streamflow obtained from six stage stations. The runoff ratio at arbitrary site is estimated by conducting the direction analysis of streamflow and by removing sinkhole. We compare the simulated and observed runoffs and know that the simulated runoff shows the valid results. So, we could use the geographical information and cell runoff concept for more fast and effective runoff simulation studies.

Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios (RCP 기후변화 시나리오에 따른 임하댐 유역의 미래 수문순환 전망)

  • Jang, Sun-Sook;Ahn, So-Ra;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.156-169
    • /
    • 2015
  • This study was to evaluate the RCP climate change impact on hydrological components in the Imha-Dam watershed using SWAT(Soil and Water Assessment Tool) Model. The model was calibrated for six year(2002~2007) and validated for six year(2008~2013) using daily observed streamflow data at three watershed stations. The overall simulation results for the total released volume at this point appear reasonable by showing that coefficient of determination($R^2$) were 0.70~0.85 and Nash-Sutcliffe model efficiency(NSE) were 0.67-0.82 for streamflow, respectively. For future hydrologic evaluation, the HadGEM3-RA climate data by scenarios of Representative Concentration Pathway(RCP) 4.5 and 8.5 of the Korea Meteorological Administration were adopted. The biased future data were corrected using 34 years(1980~2013, baseline period) of weather data. Precipitation and temperature showed increase of 10.8% and 4.9%, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, soil moisture, surface runoff, lateral flow, return flow and streamflow showed changes of +11.2%, +1.9%, +10.0%, +12.1%, +18.2%, and +11.2%, respectively.

Effect of Dam Operation on the Spatial Variability of Downstream Flow (댐운영에 따른 하류하천 유량의 공간적 변동성 평가)

  • Jeong Eun Lee;Jeongwoo Lee;Chul-gyum Kim;Il-moon Chung
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.627-638
    • /
    • 2023
  • This study aimed to evaluate the spatial variability of downstream river flow resulting from the operation of the Gimcheon Buhang Dam in the Gamcheon watershed. The dam's effects on flood reduction during the flood season and on increasing streamflow during the dry season-two main functions of multipurpose dams-were quantitatively analyzed. Streamflow data from 2013 to 2021 for the study waterhsed were simulated on a daily basis using SWAT-K (Soil and Water Assessment Tool - Korea) model. Comparison of the simulated and observed values found goodness of fit values of 0.75 or higher for both the coefficient of determination and the Nash-Sutcliffe model efficiency coefficient. The spatial analysis of the dam's effect on flood reduction focused on the annual maximum flood: rates of flood reduction at the four stations ranged from 8.5% to 25.0%. The evaluation of streamflow increase during times of low flow focused on flow duration curves: in particular, compared to the case without an upstream dam, the average low flow at the four sites increased from 33% to 198%.

Development of Wetershed Runoff Index for Major Control Points of Geum River Basin Using RRFS (RRFS에 의한 금강수계의 주요지점별 유역유출지표 개발)

  • Lee, Hyson-Gue;Hwang, Man-Ha;Koh, Ick-Hwan;Maeng, Seung-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.140-151
    • /
    • 2007
  • In this study, we attempted to develop a watershed runoff index subject to main control points by dividing the Geum River basin into 14 sub-basins. The Yongdam multipurpose dam Daecheong multipurpose dam and Gongju gage station were selected to serve as the main control points of the Geum River basin, and the observed flow of each control point was calculated by the discharge rating curve, whereas the simulated flow was estimated using the Rainfall Runoff Forecasting System (RRFS), user-interfaced software developed by the Korea Water Corporation, based on the Streamflow Synthesis and Reservoir Regulation (SSARR) model developed by the US Army Corps of Engineers. This study consisted of the daily unit observed flow and the simulated flow of the accumulated moving average flow by daily, 5-days, 10-days, monthly, quarterly and annually, and normal monthly/annually flow. We also performed flow duration analysis for each of the accumulated moving average and the normal monthly/annually flows by unit period, and abundant flow, ordinary flow, low flow and drought flow estimated by each flow duration analysis were utilized as watershed runoff index by main control points. Further, as we determined the current flow by unit period and the normal monthly/annually flow through the drought and flood flow analysis subject to each flow we were able to develop the watershed runoff index in a system that can be used to determine the abundance and scarcity of the flow at the corresponding point.

Groundwater evaluation in the Bokha watershed of the Namhan River using SWAT-MODFLOW (SWAT-MODFLOW를 활용한 남한강 복하천유역의 지하수 모의 평가)

  • Han, Daeyoung;Lee, Jiwan;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.985-997
    • /
    • 2020
  • SWAT (Soil and Water Assessment Tool)-MODFLOW (Modular Groundwater Flow) is a coupled model that linking semi-distributed watershed hydrology with fully-distributed groundwater behavior. In this study, the groundwater simulation results of SWAT and SWAT-MODFLOW were compared for Bokhacheon watershed in Namhan river basin. The models were calibrated and validated with 9 years (2009~2017) daily streamflow (Q) data of Heungcheon (HC) water level gauge station and the daily groundwater level observation data of Yulheon (YH). For SWAT, the groundwater parameters of GW_DELAY, GWQMN, and ALPHA_BF affecting baseflow and recession phase were treated. The SWAT results showed the coefficient of determination (R2) of 0.7 and Nash-Sutcliffe model efficiencies (NESQ, NSEinQ) for Q and 1/Q with 0.73 and -0.1 respectively. For SWAT-MODFLOW, the spatio-temporal aquifer hydraulic conductivity (K, m/day), specific storage (Ss, 1/m), and specific yield (Sy) were applied. The SWAT-MODFLOW showed R2, NSEQ, and NSEinQ of 0.69, 0.74, and 0.51 respectively. The SWAT-MODFLOW considerably enhanced the low flow simulation with the help of aquifer physical information. The total streamflow of SWAT and SWAT-MODFLOW were 718.6 mm and 854.9 mm occupying baseflow of 342.9 mm and 423.5 mm respectively.