• Title/Summary/Keyword: dSPACE DS1104

Search Result 20, Processing Time 0.038 seconds

Indirect Vector control of Induction motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도전동기의 간접벡터제어)

  • Lee, Dong-Min;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1022-1023
    • /
    • 2006
  • 본 논문에서는 MATLAB/SIMULINK와 dSPACE DS1104보드를 이용하여 유도전동기의 간접백터제어 알고리즘을 구현하였다. 유도전동기의 간접벡터제어를 위한 전체 시스템 모델은 SIMULINK 그래픽 모델과 dSPACE DS1104 R&D Control 보드의 Real Time Interface(RTI)를 이용하여 구현한 후에 실험을 수행하였다. 벡터제어를 위해서 전동기 전류의 측정은 16kHz로 측정하였고, 측정된 전류를 이용하여 8Hz로 전류제어기, 4kHz로 속도제어기를 구현하였다. MATLAB과 dSPACE 보드의 컴파일러가 설계된 그래픽 모델의 C source 파일과 object 파일을 자동으로 생성시켜주기 때문에 추가적인 프로그램의 coding 없이 실제 시스템의 시뮬레이션과 실험을 동시에 수행할 수 있으며 원하는 제어성능을 얻을 수 있다.

  • PDF

Speed Sensorless Vector Control of Induction Motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도 전동기의 속도 센서리스 벡터제어)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control of induction motor using MATLAB/SIMULINK and dSPACE DS1104. Proposed flux estimation algorithm, which utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, enables stable estimation of rotor flux. Proposed rotor speed estimation algorithm utilizes the estimated flux. And the estimated rotor speed is used to speed control of induction motor. Overall system consists of speed controller, current controller, and flux controller using the most general PI controller. Speed sensorless vector control algorithm is implemented as block diagrams using MATLAB/SIMULINK. And realtime control is performed by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.

Vector Control of SPMSM Using MATLAB/SIMULINK & dSPACE 1104 System (MATLAB/SIMULINK와 dSPACE 1104 시스템을 이용한 표면 부착형 영구자석 동기전동기 벡터제어)

  • Lee, Yong-Seok;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.317-326
    • /
    • 2008
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. PI controller is used for speed control and decoupling PI controller is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Experiments were carried out to examine validity of the proposed vector control implementation.

Vector Control of Induction Motor using Matlab/Simulink and DS 1104 (Matlab/Simulink와 DS1104를 이용한 유도 전동기 벡터제어)

  • Im, Jong-Bin;Go, Sung-Chul;Bae, Jae-Nam;Kang, Dong-Woo;Cho, In-Hae;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.657-658
    • /
    • 2008
  • This paper presents a impletation of vector control of induction motor using Matlab/Simulink and dSPACE DS1104. System consists of digital input block, digital ouput block, ADC block, protection block, motor control block and PWM block. It is applied indirect vector control and PI controller to speed controller and current controller.

  • PDF

Speed Sensorless Vector Control Implementation of Induction Motor Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 유도전동기 속도 센서리스 벡터제어 구현)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1086-1087
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control algorithm of induction motor using MATLAB/SIMULINK. The proposed method utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, which enables stable estimation of rotor flux. Estimated rotor speed, which is used to speed controller of induction motor, is based on estimated flux. The overall system consisted of speed controller with the most general PI controller, current controller, flux controller. Speed sensorless vector control algorithm is implemeted as block diagrams using MATLAB/SIMULINK. Realtime control is perform by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Real Time Implementation of Active Power Filters for Harmonic Suppression and Reactive Power Compensation using dSPACE DS1104

  • Kumar, Seethapathy;Umamaheswari, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • In this paper, an Active Power Filter (APF) is implemented using a dSPACE DS1104 processor to compensate harmonics and reactive power produced by nonlinear load. The reference source current is computed based on the measurement of harmonics in the supply voltage and load current. A hysteresis based current controller has been implemented in a DSP processor for injecting the compensating current into the power system, so that APF allows suppression of the harmonics and reactive power component of load current, resulting in a supply current that is purely sinusoidal. Simulation and experimental results of the proposed APF to meet the IEEE-519 standards are presented.

Implementation of Thrust Ripple Reduction for a Permanent Magnet Linear Synchronous Motor Using an Adaptive Feed Forward Controller

  • Baratam, Arundhati;Karlapudy, Alice Mary;Munagala, Suryakalavathi
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.687-694
    • /
    • 2014
  • This paper focuses on the analysis and compensation of thrust ripples in permanent magnet linear synchronous motors (PMLSM). The main drawback in PMLSMs is the presence of thrust ripples, which are mainly due to the interaction between the permanent magnets and armature slotted core. These thrust ripples reduce the performance of the drive system in high precision applications especially at low speeds. This paper analyzes thrust ripples using the discrete wavelet transform. These undesired thrust ripples are compensated by using an adaptive feed forward controller. It is observed that this novel controller reduces about 65 percent of the thrust ripples. An extensive simulation is performed through MATLAB and it is validated through experimental results using a d-SPACE system with a DS1104 control board.

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Vector control of Induction motor drive system of dSPACE system (dSPACE 시스템에 의한 유도전동기 구동 시스템의 벡터 제어)

  • Ji, Jun-Keun;Lee, Dong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.284-287
    • /
    • 2006
  • 본 논문에서는 dSPACE사의 PowerPC603e과 TMS320F240를 사용하는 dSPACE시스템에 의한 유도전동기 구동 시스템의 벡터제어에 대하여 소개한다. MATLAB/Simulink 소프트웨어와 DS1104 R&D 제어보드, Leroy SOMER사의 0.3KW 유도전동기와 IPM 인버터를 본 연구에 사용하였다. dSPACE 시스템은 Simulink 블록들을 사용함으로써 짧은 시간동안에 다양한 형태의 제어기를 설계 및 구현할 수 있는 장점이 있기 때문에 유도전동기의 벡터제어를 쉽게 설계하고 구현할 수 있다.

  • PDF