• Title/Summary/Keyword: dHash

Search Result 39, Processing Time 0.022 seconds

Hash-Chain based Micropayment without Disclosing Privacy Information (사생활 정보가 노출되지 않는 해쉬체인 기반 소액지불시스템)

  • Jeong Yoon-Su;Baek Seung-Ho;Hwang Yoon-Cheol;Lee Sang-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.499-506
    • /
    • 2005
  • A hash chain is a structure organized by hash function with high speed in computation. Systems using the hash chain are using extensively in various cryptography applications such as one-time passwords, server-supported signatures and micropayments. However, the most hash chain based on the system using pre-paid method provides anonymity but has the problem to increase payment cost. In this paper, we propose a new hash chain based on the micropayment system to keep user anonymity safe through blind signature in the withdrawal process of the root value without disclosing privacy information, and to improve efficiency by using secret key instead of public key in the system without the role of certificate.

An Efficient Hashing Mechanism of the DHP Algorithm for Mining Association Rules (DHP 연관 규칙 탐사 알고리즘을 위한 효율적인 해싱 메카니즘)

  • Lee, Hyung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.651-660
    • /
    • 2006
  • Algorithms for mining association rules based on the Apriori algorithm use the hash tree data structure for storing and counting supports of the candidate frequent itemsets and the most part of the execution time is consumed for searching in the hash tree. The DHP(Direct Hashing and Pruning) algorithm makes efforts to reduce the number of the candidate frequent itemsets to save searching time in the hash tree. For this purpose, the DHP algorithm does preparative simple counting supports of the candidate frequent itemsets. At this time, the DHP algorithm uses the direct hash table to reduce the overhead of the preparative counting supports. This paper proposes and evaluates an efficient hashing mechanism for the direct hash table $H_2$ which is for pruning in phase 2 and the hash tree $C_k$, which is for counting supports of the candidate frequent itemsets in all phases. The results showed that the performance improvement due to the proposed hashing mechanism was 82.2% on the maximum and 18.5% on the average compared to the conventional method using a simple mod operation.

Robust 3D Hashing Algorithm Using Key-dependent Block Surface Coefficient (키 기반 블록 표면 계수를 이용한 강인한 3D 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • With the rapid growth of 3D content industry fields, 3D content-based hashing (or hash function) has been required to apply to authentication, trust and retrieval of 3D content. A content hash can be a random variable for compact representation of content. But 3D content-based hashing has been not researched yet, compared with 2D content-based hashing such as image and video. This paper develops a robust 3D content-based hashing based on key-dependent 3D surface feature. The proposed hashing uses the block surface coefficient using shape coordinate of 3D SSD and curvedness for 3D surface feature and generates a binary hash by a permutation key and a random key. Experimental results verified that the proposed hashing has the robustness against geometry and topology attacks and has the uniqueness of hash in each model and key.

Security Analysis based on Differential Entropy m 3D Model Hashing (3D 모델 해싱의 미분 엔트로피 기반 보안성 분석)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.995-1003
    • /
    • 2010
  • The content-based hashing for authentication and copy protection of image, video and 3D model has to satisfy the robustness and the security. For the security analysis of the hash value, the modelling method based on differential entropy had been presented. But this modelling can be only applied to the image hashing. This paper presents the modelling for the security analysis of the hash feature value in 3D model hashing based on differential entropy. The proposed security analysis modeling design the feature extracting methods of two types and then analyze the security of two feature values by using differential entropy modelling. In our experiment, we evaluated the security of feature extracting methods of two types and discussed about the trade-off relation of the security and the robustness of hash value.

Skewed Data Handling Technique Using an Enhanced Spatial Hash Join Algorithm (개선된 공간 해쉬 조인 알고리즘을 이용한 편중 데이터 처리 기법)

  • Shim Young-Bok;Lee Jong-Yun
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.179-188
    • /
    • 2005
  • Much research for spatial join has been extensively studied over the last decade. In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. In this case, many algorithms has presented and showed excellent performance over most spatial data. However, if data sets of input table for the spatial join ale skewed, the join performance is dramatically degraded. Also, little research on solving the problem in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join (SHSJ) algorithm that combines properties of the existing spatial hash join (SHJ) algorithm based on spatial partition for input data set's distribution and SSSJ algorithm. Finally, in order to show SHSJ the outperform in uniform/skew cases, we experiment SHSJ using the Tiger/line data sets and compare it with the SHJ algorithm.

A Hash Function Based on 2D Cellular Automata (이차원 셀룰라 오토마타에 기반하는 해쉬 함수)

  • Kim Jae-Gyeom
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.670-678
    • /
    • 2005
  • A Cellular Automaton(CA) is a dynamical system in which space and time are discrete, the state of each cell is unite and is updated by local interaction. Since the characteristics of CA is diffusion and local interaction, CA is used by crypto-systems and VLSI structure. In this study, we proposed a hash function based on the concept of 2-dimensional cellular automata and analyzed the proposed hash function.

  • PDF

3D Content Model Hashing Based on Object Feature Vector (객체별 특징 벡터 기반 3D 콘텐츠 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.75-85
    • /
    • 2010
  • This paper presents a robust 3D model hashing based on object feature vector for 3D content authentication. The proposed 3D model hashing selects the feature objects with highest area in a 3D model with various objects and groups the distances of the normalized vertices in the feature objects. Then we permute groups in each objects by using a permutation key and generate the final binary hash through the binary process with the group coefficients and a random key. Therefore, the hash robustness can be improved by the group coefficient from the distance distribution of vertices in each object group and th hash uniqueness can be improved by the binary process with a permutation key and a random key. From experimental results, we verified that the proposed hashing has both the robustness against various mesh and geometric editing and the uniqueness.

SELECTIVE HASH-BASED WYNER-ZIV VIDEO CODING

  • Do, Tae-Won;Shim, Hiuk-Jae;Ko, Bong-Hyuck;Jeon, Byeung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.351-354
    • /
    • 2009
  • Distributed video coding (DVC) is a new coding paradigm that enables to exploit the statistics among sources only in decoder and to achieve extremely low complex video encoding without any loss of coding efficiency. Wyner-Ziv coding, a particular implementation of DVC, reconstructs video by correcting noise on side information using channel code. Since a good quality of side information brings less noise to be removed by the channel code, generation of good side information is very important for the overall coding efficiency. However, if there are complex motions among frames, it is very hard to generate a good quality of side information without any information of original frame. In this paper, we propose a method to enhance the quality of the side information using small amount of additional information of original frame in the form of hash. By decoder's informing encoder where the hash has to be transmitted, side information can be improved enormously with only small amount of hash data. Therefore, the proposed method gains considerable coding efficiency. Results of our experiment have verified average PSNR gain up to 1 dB, when compared to the well-known DVC codec, known as DISCOVER codec.

  • PDF

An Efficient Algorithm For Mining Association Rules In Main Memory Systems (대용량 주기억장치 시스템에서 효율적인 연관 규칙 탐사 알고리즘)

  • Lee, Jae-Mun
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.579-586
    • /
    • 2002
  • This paper propose an efficient algorithm for mining association rules in the large main memory systems. To do this, the paper attempts firstly to extend the conventional algorithms such as DHP and Partition in order to be compatible to the large main memory systems and proposes secondly an algorithm to improve Partition algorithm by applying the techniques of the hash table and the bit map. The proposed algorithm is compared to the extended DHP within the experimental environments and the results show up to 65% performance improvement in comparison to the expanded DHP.