Robust 3D Hashing Algorithm Using Key-dependent Block Surface Coefficient

키 기반 블록 표면 계수를 이용한 강인한 3D 모델 해싱

  • Lee, Suk-Hwan (Dept. of Information security, Tongmyong University) ;
  • Kwon, Ki-Ryong (Div. of Electronics, Computer & Telecommunication, Pukyong National University)
  • 이석환 (동명대학교 정보보호학과) ;
  • 권기룡 (부경대학교 전자컴퓨터정보통신공학부)
  • Published : 2010.01.25

Abstract

With the rapid growth of 3D content industry fields, 3D content-based hashing (or hash function) has been required to apply to authentication, trust and retrieval of 3D content. A content hash can be a random variable for compact representation of content. But 3D content-based hashing has been not researched yet, compared with 2D content-based hashing such as image and video. This paper develops a robust 3D content-based hashing based on key-dependent 3D surface feature. The proposed hashing uses the block surface coefficient using shape coordinate of 3D SSD and curvedness for 3D surface feature and generates a binary hash by a permutation key and a random key. Experimental results verified that the proposed hashing has the robustness against geometry and topology attacks and has the uniqueness of hash in each model and key.

3D 콘텐츠 산업 분야의 급격한 성장과 더불어, 3D 콘텐츠 인증 및 신뢰, 검색을 위한 콘텐츠 해싱 기술이 요구되어지고 있다. 그러나 영상 및 동영상과 같은 2D 콘텐츠 해싱에 비하여 3D 콘텐츠 해싱에 대한 연구가 아직까지 미비하다. 본 논문에서는 키 기반의 3D 표면 계수 분포를 이용한 강인한 3D 메쉬 모델 해싱 기법을 제안한다. 제안한 기법에서는 기본적인 Euclid 기하학 변환에 강인한 3D SSD와 표면 곡률의 평면계 기반의 블록 표면 계수를 특징 벡터로 사용하며, 이를 치환 키 및 랜덤 변수 키에 의하여 최종 이진 해쉬를 생성한다. 실험 결과로부터 제안한 해싱 기법은 다양한 기하학 및 위상학 공격에 강인하며, 모델 및 키별로 해쉬의 유일성을 확인하였다.

Keywords

References

  1. E. J. Delp, "Multimedia security: the 22nd century approach," Multimedia Systems, vol. 11, no. 2. pp. 95-97, Oct. 2005. https://doi.org/10.1007/s00530-005-0193-4
  2. A. Swaminathan, Y. Mao, and M. Wu, "Robust and secure image hashing," IEEE Trans. on Information Forensics and Security, vol. 1, issue 2, pp. 215-230, June 2006. https://doi.org/10.1109/TIFS.2006.873601
  3. Y. Mao and M. Wu, "Unicity Distance of Robust Image Hashing," IEEE Trans. on Information Forensics and Security, vol. 2, issue 3, part 1, pp. 462-467, Sept. 2007. https://doi.org/10.1109/TIFS.2007.902260
  4. V. Monga and M.K. Mhcak, "Robust and Secure Image Hashing via Non-Negative Matrix Factorizations," IEEE Trans. on Information Forensics and Security, vol. 2, issue 3, part 1, pp. 376-390, Sept. 2007. https://doi.org/10.1109/TIFS.2007.902670
  5. V. Monga and B.L. Evans, "Perceptual Image Hashing Via Feature Points: Performance Evaluation and Tradeoffs," IEEE Trans. on Image Processing, vol. 15, issue 11, pp. 3452-3465, Nov. 2006. https://doi.org/10.1109/TIP.2006.881948
  6. V. Monga, A. Banerjee, and B.L. Evans, "A clustering based approach to perceptual image hashing," IEEE Trans. on Information Forensics and Security, vol. 1, issue 1, pp. 68-79, March 2006. https://doi.org/10.1109/TIFS.2005.863502
  7. B. Coskun, B. Sankur, and N. Memon, "Spatio– Temporal Transform Based Video Hashing," IEEE Trans. on Multimedia, vol. 8, issue 6, pp. 1190-1208, Dec. 2006. https://doi.org/10.1109/TMM.2006.884614
  8. C. De Roover, C. De Vleeschouwer, F. Lefebvre, B. Macq, "Robust video hashing based on radial projections of key frames," IEEE Trans. on Signal Processing, vol. 53, issue 10, part 2, pp. 4020-4037, Oct. 2005. https://doi.org/10.1109/TSP.2005.855414
  9. B. Bustos, D. A. Keim, D. Saupe and T. Schreck, "Content-Based 3D Object Retrieval," IEEE Computer Graphics and Applications, vol. 27, issue 4, pp. 22-27, July-Aug. 2007. https://doi.org/10.1109/MCG.2007.80
  10. B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V. Vranic, "Feature-based similarity search in 3D object databases," ACM Computing Surveys (CSUR), vol. 37, issue 4, pp. 345-387, Dec. 2005. https://doi.org/10.1145/1118890.1118893
  11. T. Zaharia and F. Preteux, "3D-shape-based retrieval within the MPEG-7 framework," Proc. SPIE on Nonlinear Image Processing and Pattern Analysis XII, San Jose, CA, vol. 4304, pp. 133-145, Jan. 2001.
  12. M. Bober, "MPEG-7 Visual Shape Descriptors," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 716-719, June 2001. https://doi.org/10.1109/76.927426
  13. C. Grana, M. Davolio and R. Cucchiara, "Similarity-Based Retrieval with MPEG-7 3D Descriptors: Performance Evaluation on the Princeton Shape Benchmark," Lecture Notes in Computer Science, vol. 4877, pp. 308-317, 2007.
  14. A. Jagannathan and E. L. Miller, "Three- Dimensional Surface Mesh Segmentation Using Curvedness-Based Region Growing Approach," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2195-2204, Dec. 2007. https://doi.org/10.1109/TPAMI.2007.1125
  15. N. Dyn, K. Hormann, S.J. Kim and D. Levin, "Optimizing 3D Triangulations Using Discrete Curvature Analysis," Math. Methods for Curves and Surfaces, pp. 135-146, 2000.
  16. R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama, "Watermarking 3D polygonal meshes in the mesh spectral domain," Proc. of Graphics Interface, pp. 9-17, 2001.
  17. S. Kanai, H. Date, and T. Kishinami, "Digital watermarking for 3D polygons using multiresolution wavelet decomposition," Proc. of Sixth IFIP WG 5.2 GEO-6, pp. 296-307, Dec. 1998.
  18. E. Praun, H. Hoppe, and A. Finkelstein, "Robust mesh watermarking," Proc. of ACM SIGGRAPH, pp. 49-56, Aug. 1999.
  19. O. Benedens, "Geometry-based watermarking of 3D models," IEEE Computer Graphics and Applications, vol. 19, issue 1, pp. 46-55, Jan./Feb. 1999. https://doi.org/10.1109/38.736468
  20. S.H. Lee and K.R. Kwon, "A Watermarking for 3D-Mesh Using the Patch CEGIs," Digital Signal Processing, vol. 17, issue 2, pp. 396-413, March 2007. https://doi.org/10.1016/j.dsp.2005.04.014
  21. S.H. Lee and K.R, Kwon, "Mesh watermarking based projection onto two convex sets," Multimedia Systems, vol. 13, no. 5-6, pp. 323-330, Feb. 2008. https://doi.org/10.1007/s00530-007-0095-8
  22. 이석환, 권성근, 권기룡, "볼록 집합 투영 기법을 이용한 3D 메쉬 워터마킹," 대한전자공학회논문지, 제43권 CI편 제2호, pp. 81-92, 2006년 3월.
  23. 이석환, 권기룡, "k-means++ 기반의 설계도면 워 터마킹 기법," 대한전자공학회논문지, 제46권 CI편 제5호, pp. 57-70, 2009년 9월.