• Title/Summary/Keyword: d.c. stress

Search Result 1,073, Processing Time 0.036 seconds

The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響)

  • 박영조;김정규;신용승;김성민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1986
  • Fatigue surface crack growth was studied in 7075-T651 aluminum alloy plates subjected largely to bending loads. The surface crack length and its depth were measurement by the unloading elastic compliance method. The surface crack growth rate dc/dN, on the surface and da/dN, in the depth direction were obtained by the secant method. The stress intensity factor range .DELTA.K was computed by means of Newman and Raju equation. The aspect ratio a/c was presented in form of a/c=0.815-0.853(a/T). The effect of the stress ratio on the stable surface crack growth rates under increasing .DELTA.T is larger in lower .DELTA.K, while the relation between dc/dN, da/dN and the effective stress intensity factor range .DELTA.K$_{eff}$ is weakly dependent on the stress ratio.o.

Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions (FDM 3D프린팅 어닐링 조건에 따른 내부응력 완화에 관한 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Kim, Su Hyun;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.130-136
    • /
    • 2018
  • In this paper, the effects of different 3D printing parameters including laminated angle and annealing temperature, were observed for their effects on tensile testing. In 3D printing, a filament is heated quickly, extruded, and then cooled rapidly. Because plastic is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress within the printed part. Therefore, internal stress can be removed using annealing and to increase tensile strength and strain. During air cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 46% while the tensile stress tended to increase by 7.4%. During oven cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 34% while the tensile stress tended to increase by 22.2%. In this study, we found "3D printing with annealing" eliminates internal stress and increases the strength and stiffness of a printed piece. On the microstructural level, annealing reforms the crystalline structures to even out the areas of high and low stress, which created fewer weak areas. These results are very useful for making 3D printed products with a mechanical strength that is suitable for applications.

A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature (압력용기용 강의 저온 피로 크랙 하한계 특성에 관한 연구(I))

  • Park, K.D.;Ro, T.Y.;Kim, Y.T.;Kim, H.J.;Oh, M.S.;Lee, K.L.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • In this study, CT specimens were prepared from ASTM SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C\;and\;-100^{\circ}C$ and in the range of stress ratio of 0.05 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\Delta}K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm $d{\alpha}/dN\;-{\Delta}K$ in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate $d{\alpha}/dN$ is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

Integration Process and Reliability for $SrBi_2$ $Ta_2O_9$-based Ferroelectric Memories

  • Yang, B.;Lee, S.S.;Kang, Y.M.;Noh, K.H.;Hong, S.K.;Oh, S.H.;Kang, E.Y.;Lee, S.W.;Kim, J.G.;Shu, C.W.;Seong, J.W.;Lee, C.G.;Kang, N.S.;Park, Y.J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.141-157
    • /
    • 2001
  • Highly reliable packaged 64kbit ferroelectric memories with $0.8{\;}\mu\textrm{m}$ CMOS ensuring ten-year retention and imprint at 125^{\circ}C$ have been successfully developed. These superior reliabilities have resulted from steady integration schemes free from the degradation, due to layer stress and attacks of process impurities. The resent results of research and development for ferroelectric memories at Hynix Semiconductor Inc. are summarized in this invited paper.

  • PDF

Investigation of the Internal Stress Relaxation in FDM 3D Printing : vegetable lubricating oil (FDM 3D프린팅 윤활유에 따른 내부응력 완화에 관한 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Kim, Su Hyun;Kang, Sun Ho;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • In this paper, the effects of different 3D printing conditions including oil lubrication and annealing are observed for their effects on tensile testing. In 3D printing, a press-out extrude filament is rapidly heated and cooled to create internal stress in the printed part. The 3D printing internal stress can be removed using oil-coated filament and annealing. During the oven cooling at an annealing temperature of $106^{\circ}C$, the stress of the specimens with laminated angle $0^{\circ}$ tends to increase by 12.6%, and that of the oil-coated filament printing specimens is increased by 17%. At the annealing temperature of $106^{\circ}C$, the stress of the oil-coated filament printing specimens tends to increase by 35%. In this study, we have found that the oil lubrication and annealing remove the internal stresses and increase the strength of the printed specimens. The oil lubrication and annealing reform the crystalline structures to even out the areas of high and low stress, which creates fewer fragile areas. These results are very useful for the manufacture of 3D printing products with a suitable mechanical strength for applications.

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions

  • Kim, Deok Yun;Kim, Jong Hyuk;Choi, Won Jun;Han, Gi Ppeum;Kil, Dong Yong
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1839-1848
    • /
    • 2021
  • Objective: The objective of the present study was to investigate the comparative effects of dietary functional nutrients including glutamine (Gln), chromium picolinate (Cr picolinate), vitamin C (Vit C), betaine (Bet), and taurine (Tau) on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Methods: A total of 420 21-d-old Ross 308 male broiler chickens (initial body weight = 866±61.9 g) were randomly allotted to 1 of 7 treatment groups with 6 replicates. One group was kept under thermoneutral conditions and was fed a basal diet (PC, positive control). Other 6 groups were exposed to a cyclic heat stress condition. One of the 6 groups was fed the basal diet (NC, negative control), whereas 5 other groups were fed the basal diet supplemented with 0.5% Gln, 500 ppb Cr picolinate, 250 mg/kg Vit C, 0.2% Bet, or 1.0% Tau. The diets and water were provided ad libitum for 21 d. Results: Broiler chickens in NC group had decreased (p<0.05) growth performance and immune responses measured based on cutaneous basophil hypersensitivity (CBH), but increased (p<0.05) stress responses measured based on feather corticosterone concentrations and blood heterophil:lymphocyte than those in PC group. However, none of dietary functional nutrients had a positive effect on growth performance of broiler chickens. Dietary supplementation of 250 mg/kg Vit C improved (p<0.05) CBH responses of broiler chickens, but other functional nutrients had no such an improvement in CBH responses. All functional nutrients decreased (p<0.05) stress responses of broiler chickens. Conclusion: Functional nutrients including Gln, Cr picolinate, Vit C, Bet, and Tau at the supplemental levels used in this study decrease stress responses of broiler chickens to a relatively similar extent. However, this reduction in stress responses could not fully ameliorate decreased productive performance of broiler chickens raised under the current heat stress conditions.

A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature (압력용기용 강의 저온 피로크랙 하한계 특성에 관한 연구(II))

  • 박경동;김정호;정찬기;하경준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.78-83
    • /
    • 2000
  • In this study, CT specimens were prepared from AST SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at 25$^{\circ}C $, -60$^{\circ}C $, -80$^{\circ}C $ and -100$^{\circ}C $ and in the range of stress ratio of 0.05, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\delta} K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\delta $K in the stable of fatigue crack growth (Region II) were increased in proportion to descending temperature. It was assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN -$\delta $K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN is rapid in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Near $100^{\circ}C$ low temperature a-Si TFT array fabrication on 7 inch flexible PES substrates

  • Nikulin, Ivan V.;Hwang, Tae-Hyung;Jeon, Hyung-Il;Kim, Sang-Il;Roh, Nam-Seok;Shin, Seong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.434-438
    • /
    • 2006
  • High-quality a-Si TFTs were fabricated on 7 inch plastic PES substrates at $130^{\circ}C$ and $100^{\circ}C$. It had been shown that the key factor for successful TFT fabrication on the relatively large plastic substrates is thorough control of total active layer's stress by means of deposition temperature reduction and single layer's intrinsic stress optimization.

  • PDF