• Title/Summary/Keyword: d-q reference frame

Search Result 61, Processing Time 0.02 seconds

Modeling and Experiment of 50kW Diesel Generator in Grid-connected Mode (50kW 계통연계형 디젤발전기의 모델링 및 실험)

  • Lee, Wujong;Lee, Hak Ju;Chag, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • This paper researches a modeling and experiment of 50kW diesel generator in grid-connected mode. The output of diesel generator can be calculated by the phase difference between voltage and current as well as the diesel generator parameter such as mutual impedance, field current and rotor angle. Considering the different d-q frame impedance, the output of diesel generator is analyzed for equation and verified by simulation. The diesel generator modeled by considering the time delay for actuator, diesel engine and exciter. The controller of diesel generator is divided into governor and exciter. The governor consists of speed controller and active power controller, where speed controller maintains frequency as 60Hz and active power tracks active power reference. On the other hand, the exciter consists of voltage controller and reactive power controller, where voltage controller controls $380V_{LL}$ and reactive power is controlled as zero. When the active power reference is changed as 0.1pu in the grid connected mode, the active power takes 10 seconds to reach the steady state and the reactive power is maintains as zero. The 50kW diesel generator is tested and experiment results are well matched with the simulation results.

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

Three-Phase Z-Source Dynamic Voltage Restorer with a Fuel Cells Source (연료전지 전원을 갖는 3상 Z-소스 동적 전압 보상기)

  • Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.41-48
    • /
    • 2008
  • This paper proposes a three-phase Z-source dynamic voltage restorer (Z-DVR) to mitigate the voltage sag for the critical loads. The proposed system is composed of passive filter and Z-source topology inverter. As an ESS(Energy Storage System) of the proposed system is employed the Proton Exchange Membrane Fuel Cells (PEMFC). To calculate and control the harmonics and compensation voltage, $i_{d}-i_{q}$ theory in dq rotating reference frame and PI controller are used. In case that three-phase voltage sags occurred, a PSIM simulation was done for the performance comparison of the conventional method employed battery stacks and proposed method. As a result, considering the voltage compensation performance, each method was nearly similar. Also, the compensation performance and the %THD(%Total Harmonic Distortion) result under the various source voltage conditions (sag or swell) were presented and discussed to show the performance of the proposed system.

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.

Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation (인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기)

  • Lee, Taejin;Jo, Jongmin;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

CAVITATION ANALYSIS IN A CENTRIFUGAL PUMP USING VOF METHOD (VOF기법을 이용한 원심펌프 내의 공동현상에 관한 유동해석)

  • Lee, W.J.;Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Centrifugal pumps consume considerable amount of energy in various industrial applications. Therefore, improvement of the efficiency of these machines has become a major challenge. Cavitation is a phenomenon which decreases the pump efficiency and even causes structural demage. Hence, the goal of this paper is to investigate the cavitation problem in the single-stage and double-stage centrifugal pumps. The Volume of Fraction (VOF) method has been used for the numerical simulations together with Rayliegh-Plesset model for the gas-liquid two-phase flow inside the pump. In order to capture the turbulent phenomena, the standard k-${\varepsilon}$ turbulence model has been adopted, and the simulations have been done as unsteady cases. In addition, the motion of the rotating parts has been simulated using Multi Reference Frame(MRF) method. The results are presented and compared in terms of hydraulic head and NPSH for both the single-stage and double-stage pumps. The H-Q curves show the effects of cavitation on decreasing the pumps performances.

Instantaneous Voltage Sag Corrector Controller Design of Power Line System (전력선 계통의 순시 전압 강하 제어기 설계)

  • Lee, Sang-Hoon;Hong, Hyun-Mun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.6-11
    • /
    • 2006
  • This paper describes the novel control techniques design of VSC(Voltage Sag Corrector) for the purpose of power line quality enhancement. A fast detecting technique of voltage sag is implemented through the detection of instantaneous value on synchronous rotating dq-reference frame. The first order digital filter is added in the detection algorithm to protect the insensitive characteristics against the noise. The relationship between the total detection time and cut-off frequency of the filter is described. The size of the capacitor bank used as the energy storage element is designed from the point of view of input/output energy with circuit analysis. Finally, the validity of the proposed scheme is proven through the simulated results.

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

Invariant Set Based Model Predictive Control of a Three-Phase Inverter System (불변집합에 기반한 삼상 인버터 시스템의 모델예측제어)

  • Lim, Jae-Sik;Park, Hyo-Seong;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • This paper provides an efficient model predictive control for the output voltage control of three-phase inverter system which includes output LC filters. Use of SVPWM (Space Vector Pulse-Width-Modulation) and the rotating d-q frame is made to obtain an input constrained dynamic model of the inverter system. From the measured/estimated output current and reference output voltage, corresponding equilibrium values of the inductor current and the control input are computed. Derivation of a feasible and invariant set around the equilibrium state is made and then a receding horizon strategy which steers the current state deep into the invariant set is proposed. In order to remove offset error, use of disturbance observer is made in the form of state estimator. The efficacy of the proposed method is verified through simulations.

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.